Article contents
Junction contact materials and interfaces in Si channel devices
Published online by Cambridge University Press: 18 February 2011
Abstract
Effective schemes to address contact resistance between silicide and a highly doped diffused junction are examined. Some of the techniques introduced include (1) metal work function tuning, (2) interfacial dipole engineering, and (3) phase modulation of the nickel silicide. These techniques allow modulation of the Schottky barrier of NiSi to n-Si to less than 0.3 eV, which is crucial to achieve sub 10−8 Ω cm2 contact resistivity for the sub-32 nm technology node.
- Type
- Research Article
- Information
- MRS Bulletin , Volume 36 , Issue 2: Contact materials for nanoelectronics , February 2011 , pp. 97 - 100
- Copyright
- Copyright © Materials Research Society 2011
References
1.Kim, S.-D., Park, C.-M., Woo, C.S., IEEE Trans. Electron Dev. 49 (3), 467 (2002).CrossRefGoogle Scholar
3.Tu, K.N., Thompson, R.D., Tsaur, B.Y., Appl. Phys. Lett. 38 (8), 626 (1981).CrossRefGoogle Scholar
4.Zhu, S., Chen, J., Li, M.-F., Lee, S.J., Singh, J., Zhu, C.X., Du, A., Tung, C.H., Chin, A., Kwong, D.L., IEEE Electron Dev. Lett. 25 (8), 565 (2004).CrossRefGoogle Scholar
5.Loh, W.-Y., Felch, S., Etienne, H., Ok, I., Turnbaugh, D., Spiegel, Y., Torregrosa, F., Roux, L., Majhi, P., Jammy, R., 18th Int. Conf. on Ion Implantation Tech. 1321 (2010).Google Scholar
9.Zhang, M., Knoch, J., Zhao, Q.T., Breuer, U., Mantl, S., Solid-State Electronics 50, 594 (2006).CrossRefGoogle Scholar
14.Tejedor, C., Flores, F., Louis, E., J. Phys. C: Solid State Phys. 10, 2163 (1977).CrossRefGoogle Scholar
16.Connelly, D., Faulkner, C., Grupp, D.E., Harris, J.S., IEEE Trans. Nanotechnology 3, 1 (2004).CrossRefGoogle Scholar
17.Takahashi, T., Nishimura, T., Chen, L., Sakata, S., Kita, K., Toriumi, A., Int. Electron Dev. Meet. Tech Dig. 697 (2007).Google Scholar
18.Kobayashi, M., Kinoshita, A., Saraswat, K., Wong, H.-S.P., Nishi, Y., Symp. VLSI Technol. 54 (2008).Google Scholar
19.Coss, B.E., Loh, W.-Y., Oh, J., Smith, G., Smith, C., Adhikari, H., Sassman, B., Parthasarathy, S., Barnett, J., Majhi, P., Wallace, R.M., Kim, J., Jammy, R., Symp. VLSI Technol. 104 (2009).Google Scholar
20.Coss, B., Loh, W.-Y., Wallace, R.M., Kim, J., Majhi, P., Jammy, R., Appl. Phys. Lett. 95, 222105 (2009).CrossRefGoogle Scholar
22.Lauwers, A., Steegen, A., de Potter, M., Lindsay, R., Satta, A., Bender, H., Maex, K., J. Vac. Sci. Technol., B 19 (6), 2026 (2001).CrossRefGoogle Scholar
23.d’Heurle, F., Peterson, C.S., Baglin, J.E.E., La Placa, S.J., Wong, C.Y., J. Appl. Phys. 55 (12), 4208 (1984).CrossRefGoogle Scholar
25.Loh, W.-Y., Hung, P.Y., Coss, B.E., Kalra, P., Ok, I., Smith, G., Kang, C.-Y., Lee, S.-H., Oh, J., Sassman, B., Majhi, P., Kirsch, P., Tseng, H.-H., Jammy, R., Symp. VLSI Technol. 100 (2009).Google Scholar
26.Tung, R.T., Levi, A.F.J., Sullivan, J.P., Schrey, F., Phys. Rev. Lett. 66 (1), 72 (1991).CrossRefGoogle Scholar
- 5
- Cited by