Hostname: page-component-599cfd5f84-56l7z Total loading time: 0 Render date: 2025-01-07T06:30:13.176Z Has data issue: false hasContentIssue false

LIGA Technologies and Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

LIGA, an acronym for the German words for lithography, electroplating, and molding, is a technique used to produce micro-electromechanical systems (MEMS) made from metals, ceramics, or plastics. The LIGA process utilizes x-ray synchrotron radiation as a lithographic light source. Highly collimated, high-energy x-rays from the synchrotron impinge on a patterned mask in proximity to an x-ray-sensitive photoresist, typically poly(methyl methacrylate) (PMMA).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Becker, E.W.Ehrfeld, W.Hagmann, P.Maner, A. and Munchmeyer, D.Microelectron. Eng. 4 (1986) p.35.CrossRefGoogle Scholar
2Lorenz, H.Despont, M.Fahrni, N.LaBianca, N.Renaud, P. and Vettiger, P.J.Micromech. Microeng. 7 (1997) p.121.CrossRefGoogle Scholar
3Avon, A.A.Braff, R.Lin, C.C.Sawin, H.H. and Schmidt, M.A. J. Electrochem. Soc. 146 (1) (1999) p.339.CrossRefGoogle Scholar
4Gower, M.C.Optics Express 7 (2)(2000) p.56.CrossRefGoogle Scholar
5Institute of Microtechnology Mainz Micro-sync Home Page, www.imm-mainz.de/micro-sync/ (accessed March 2001).Google Scholar
6Griffiths, S.K.Ting, A. and Hruby, J.M.Micro-sys. Technol. 6 (3)(February 2000) p.99.CrossRefGoogle Scholar
7Griffiths, S.K.Hruby, J.M. and Ting, A.J.Micro-mech. Microeng. 9 (1999) p.353.CrossRefGoogle Scholar
8Bley, P.Bade, K.Chung, S.J.El-Kholi, A., Hanemann, T.Heckele, H.Pfleging, W. and Schaller, T. “Non IC Compatible Technologies,” Microsystem Roadmap, in preparation.Google Scholar
9Tolfree, D.W.Rep. Prog. Phys. 61 (4) (1998) p.313.CrossRefGoogle Scholar
10JENOPTIK Mikrotechnik GmbH Home Page, www.jo-mikrotechnik.com (accessed March 2001).Google Scholar
11Institute of Microtechnology Mainz, Developments/IMM-Made Equipment Web page: x-ray scanner for deep lithography, www.imm-mainz.de/english/developm/made_equ/xray.html (accessed March 2001).Google Scholar
12Zanghellini, J.Achenback, S.El-Kholi, A., Mohr, J. and Patenburg, F.J.Microsys. Technol. 4 (1998) p.94.CrossRefGoogle Scholar
13Ehrfeld, W.Hessel, V.Lowe, H.Schulz, C. and Weber, L.Microsys. Technol. 5 (3)(1999) p.105.CrossRefGoogle Scholar
14Institute of Microtechnology Mainz, Developments/IMM-Made Equipment Web page: electroforming apparatus, www.imm-mainz.de/ english/developm/made_equ/apparat.html (accessed March 2001).Google Scholar
15Heckele, M.Muller, K.D. and Bacher, W.Microsys. Technol. 4 (3)(1998) p.122.CrossRefGoogle Scholar
16Piotter, V.Benzler, T.Hanemann, T.Woellmer, H.Ruprecht, R. and Hausselt, J. in Proc. SPIE Design, Test, and Microfabrication of MEMS and MOEMS Vol. 3680, edited by Courtois, G.Crary, S.Ehrfeld, W.Fujita, H.Karam, J.M. and Markus, K. (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1999) p.456.CrossRefGoogle Scholar
17Knitter, R.Gunther, E.Maciejewski, U. and Odemer, C.Ceram. Forum Int. 71 (9)(1994) p.549.Google Scholar
18Takahat, K.Shibaike, N. and Guckel, H.Microsys. Technol. 6 (5)(2000) p.175.CrossRefGoogle Scholar
19Feddema, J.T.Simon, R.Polosky, M. and Christenson, T. “Ultra-Precise Assembly of Micro-Electromechanical Systems (MEMS) Components,” SAND99-0746 (Sandia National Laboratories, Albuquerque, NM, April 1999).Google Scholar
20STEAG microParts GmbH Home Page, www.microparts.de (accessed March 2001).Google Scholar
21Institute of Microtechnology Mainz Home Page, www.imm-mainz.de (accessed March 2001).Google Scholar
22AXSUN Technologies Home Page, www. axsun.com (accessed March 2001).Google Scholar