Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T15:20:41.377Z Has data issue: false hasContentIssue false

Magneto-optic Recording Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

With significant developments in laser and semiconductor industries, optical-storage technology has successfully emerged into the consumer marketplace and more recently into the computer-based data-storage marketplace as well. For computer-based data storage and other purposes, the first generation of the International Standards Organization (ISO) standard 5-1/4-in. magneto-optic (MO) drive (325 Mbytes × 2/double-sided) was introduced in 1988 and the 3.5-in. drive (128 Mbytes) in 1991. Since then progress has been remarkable in capacity and data-transfer rate as well as cost/performance ratio, and the so-called 2X (650 Mbytes × 2 per 5-in. double-sided disk) and 3X (1 Gbyte × 2 per 5-in. double-sided disk) drives are now in the marketplace. Also a remarkable product called the MiniDisc (2.5 in.), the first recordable optical system for both the consumer and the data market, utilizes data compression and direct overwrite schemes.

The solution for increasing the capacity is by no means simple since the new technology must accommodate many factors. One of the key factors is backward compatibility. This feature is important to removable media because the customer expects new products to be compatible with their previous investments in data stored on older generation media. Another key factor is cost. The sales price ($/Mbyte) must be significantly lower than prior generations of optical-storage products and alternative storage systems (e.g., removable hard disks).

To increase the capacity in optical-storage media, several solutions are possible: short-wavelength lasers, magnetically induced super resolution (MSR), pulse width modulation (PWM), volumetric recording, land/groove recording with crosstalk cancellation, partial-response channels, banding of data, and higher numerical aperture objective lenses.

Type
Ultrahigh-Density Information-Storage Materials
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hurst, J.E. Jr. and Kozlovsky, W.J., Jpn. J. Appl. Phys. 32–11B (1993) p. 5301.Google Scholar
2.Aratani, K., Fukumoto, A., Ohta, M., Kaneko, M., and Watanabe, K., Proc. SPIE, 1499 Optical Data Storage Topical Meeting (Colorado Springs, 1991) p. 209.Google Scholar
3.Murakami, Y., Iketani, N., Nakajima, J., Takahashi, A., Ohta, K., and Ishizuka, T., J. Magn. Soc. Jpn. 17–S1 (1993) p. 201.Google Scholar
4.Rubin, K., Rosen, H., Strand, T., Imano, W., and Tang, W., presented at Optical Data Storage Topical Meeting, WA3-1 (Dana Point, CA, 1994).Google Scholar
5.Mansfield, S.M. and Kino, G.S., Appl. Phys. Lett. 57 (1990) p. 2615.CrossRefGoogle Scholar
6.Terris, B.D., Mamin, H.J., and Rugar, D., Appl. Phys. Lett. 68 (2) (1996) p. 141.CrossRefGoogle Scholar
7.Betzig, E., Trautman, J.K., Wolfe, R., Gyorgy, E.M., Finn, P.L., Kryder, M.H., and Chang, C-H., Appl. Phys. Lett. 61 (1992) p. 142.CrossRefGoogle Scholar
8.Kozlovsky, W., Lenth, W., Latta, E.E., Moser, A., and Bona, G.L., Appl. Phys. Lett. 56 (1990) p. 2291.CrossRefGoogle Scholar
9.Kaneko, M., Sabi, Y., Ichimura, I., and Hashimoto, S., IEEE Trans. Magn. 29 (1993) p. 3766.CrossRefGoogle Scholar
10.Maeda, T., Tsuchinaga, H., Ide, H., Saito, A., Toda, T., Kugiya, F., Ojima, M., Mita, S., and Shigematsu, K., Jpn. J. Appl Phys. 32–11B (1993) p. 5335; H. Ide, T. Toda, F. Kirino, T. Maeda, F. Kugiya, S. Mita, and K. Shigematsu, Jpn. J. Appl Phys. p. 5342.CrossRefGoogle Scholar
11.Ohta, N., Jpn. J. Appl Phys. 32–11B (1993) p. 5185.CrossRefGoogle Scholar
12.Shono, K., Kuroda, S., and Ogawa, S., IEEE Trans. Magn. 27 (1991) p. 5130.CrossRefGoogle Scholar
13.Weller, D., Hurst, J., Notarys, H., Brandle, H., Farrow, R.F.C., Marks, R., and Harp, G., J. Magn. Soc. Jpn. 17–S1 (1993) p. 72.Google Scholar
14.Gambino, R.J. and McGuire, T.R., J. Appl. Phys. 57 (1985) p. 3906.CrossRefGoogle Scholar
15.Suzuki, T. and Katayama, T., IEEE Trans. Magn. 22 (1986) p. 1230.CrossRefGoogle Scholar
16.Suzuki, T., Lin, C-J., and Bell, A.E., IEEE Trans. Magn. 24 (1989) p. 2452.CrossRefGoogle Scholar
17.Hurst, J., Weller, D., and Notarys, H., J. Magn. Soc. Jpn. 17–S1 (1993) p. 299.Google Scholar
18.Zeper, W.B., Greidanus, F., and Carcia, P.F., IEEE Trans. Magn. 25 (1989) p. 3764.CrossRefGoogle Scholar
19.Hashimoto, S., Ochiai, Y., and Aso, K., Jpn. J. Appl. Phys. 28 (1989) p. L1824.CrossRefGoogle Scholar
20.Wang, Y.J., Luo, C.P., Kong, L.C., Qi, X. S., Huang, D., and Chen, Y., J. Magn. Soc. Jpn. 17–S1 (1993) p. 294.Google Scholar
21.Nakada, M. and Okada, M., presented at MORIS'94, 27B-03 (Tokyo, September 1994).Google Scholar
22.Li, Z.G. and Carcia, P.F., J. Appl. Phys. 71 (1992) p. 842.CrossRefGoogle Scholar
23.Zeper, W., Jongenelis, A., Jacobs, B., van Kesteren, H., and Carcia, P.F., IEEE Trans. Magn. 28 (1992) p. 2503.CrossRefGoogle Scholar
24.Hashimoto, S., J. Appl. Phys. 75 (1994) p. 438.CrossRefGoogle Scholar
25.Suzuki, T., Sequeda, F., Do, H., Huang, T.C., and Gorman, G., J. Appl. Phys. 67 (1990) p. 4435; T. Suzuki, J. Appl. Phys. 69 (1991) p. 4756.CrossRefGoogle Scholar
26.Takahashi, M., Shoji, H., Hozumi, Y., and Wakiyama, T., J. Magn. Mater. 30 (1994) p. 67.CrossRefGoogle Scholar
27.Williams, H.J., Sherwood, R.C., Foster, F.G., and Kelly, E.M., J. Appl. Phys. 28 (1957) p. 1181.CrossRefGoogle Scholar
28.Chida, K., Tsujiya, B., Katsui, A., and Egashira, K., IEEE Trans. Magn. 13 (1979) p. 982.CrossRefGoogle Scholar
29.Fukumoto, A., Yoshimura, S., Udagawa, T., Aratani, K., Ohta, M., and Kaneko, M., Proc. Data Storage Topical Meeting, TuB4 (Colorado Springs, 1991).Google Scholar
30.Ohta, M., Fukumoto, A., Aratani, K., Kaneko, M., and Watanabe, K., J. Magn. Soc. Jpn. 15–S1 (1991) p. 319.Google Scholar
31.Murakami, Y., Iketani, N., Nakajima, J., Takahashi, A., Ohta, K., and Ishikawa, T., J. Magn. Soc. Jpn. 17–S1 (1993) p. 201.Google Scholar
32.Murakami, Y., presented at the Workshop on Magneto-optical Recording Materials (Los Alamos, NM, June 1994).Google Scholar
33.Kawano, T., Ito, H., Yoshida, H., and Kobayashi, Y., J. Magn. Soc. Jpn. 19–51 (1995) p. 323.CrossRefGoogle Scholar
34.Birukawa, M., Fukamichi, Y., Miyatake, N., and Kawabata, T., presented at Optical Memory Symposium, Mo-C4 (Dana Point, CA, 1994).Google Scholar
35.Hartman, H., Braat, J., and Jacobs, B., IEEE Trans. Magn. 20 (1984) p. 1013.CrossRefGoogle Scholar
36.Nakao, T., Ojima, M., Miyamura, Y., Okamine, S., Sukeda, H., Ohta, N., and Takeuchi, Y., Jpn. J. Appl. Phys. 26–4 (1987) p. 149.CrossRefGoogle Scholar
37.Saito, J., Sato, N., Matsumoto, H., and Akasaka, H., Jpn. J. Appl. Phys. 26–4 (1987) p. 155.CrossRefGoogle Scholar
38.Ohnuki, S., Shimazaki, K., Ohta, N., Inagoya, O., and Sukeda, A., J. Mag. Soc. Jpn. 17–S1 (1993) p. 205.Google Scholar
39.Ohta, N., Shimazaki, K., Yoshihiro, M., Nagai, N., and Ohnuki, S., presented at 40th MMM (Philadelphia, November 1995).Google Scholar
40.Gadetsky, S., Suzuki, T., Erwin, J.K., and Mansuripur, M., J. Mag. Soc. Jpn. 17–S1 (1993) p. 205.Google Scholar
41.Sumi, S., Teragaki, Y., Kusumoto, Y., Torazawa, K., Tsunashima, S., and Uchiyama, S., J. Magn. Soc. Jpn. 17–S1 (1993) p. 151.Google Scholar