Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T23:17:01.007Z Has data issue: false hasContentIssue false

Material Processing Using Femtosecond Lasers: Repairing Patterned Photomasks

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The use of ultrafast laser pulses is having an impact on materials processing in profound ways. “Machining” with femtosecond pulses affords considerable advantages over nanosecond pulses, such as subdiffraction-limited material ablation, where ablated spot dimensions are below that achievable when longer pulses are focused to the minimum spot size dictated by optical physics. These properties have been exploited to address what had become a critical problem in the semiconductor industry, the repair of patterned photomasks. We will describe how the fundamentals of femtosecond laser ablation have been implemented in a machine designed to repair photomasks. We will also describe experiments designed to deposit Cr metal onto fused-silica substrates using 100-fs, 400-nm light pulses at atmospheric pressure. Multiphoton dissociation of Cr(CO)6 adsorbed on fused-silica substrates initiates Cr deposition. The mechanisms for deposition on both transparent (fused silica) and absorbing (Cr metal) substrates are discussed. Finally, we describe experiments that were carried out to extend the photomask repair process to shorter wavelengths (below 200 nm) using light generated by frequency-mixing of ultrashort, 30-fs pulses in an Ar-filled capillary.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Pronko, P.P.Dutta, S.K.Du, D. and Singh, R.K.J. Appl. Phys. 78 (1995) p. 6233.CrossRefGoogle Scholar
2Chichkov, B.N.Momma, C.Nolte, S.Alvensleben, F. Von, and Tunnermann, A.Appl. Phys. A 63 (1996) p. 109.CrossRefGoogle Scholar
3Rubenchik, A.M.Feit, M.D.Perry, M.D. and Larsen, J.T.Appl. Surf. Sci. 127–129 (1998) p. 193.CrossRefGoogle Scholar
4Fann, W.S.Storz, R.Tom, H.W.K. and Bokor, J. Phys. Rev. Lett. 68 (1992) p. 2834.CrossRefGoogle Scholar
5Ridley, B.K.Quantum Processes in Semiconductors (Oxford University Press, Oxford, 1988).Google Scholar
6Wagner, A.Nucl. Instr. Methods 218 (1983) p. 355.CrossRefGoogle Scholar
7Wagner, A. and Levin, J.P.Nucl. Instr. Methods B37/38 (1989) p. 224.CrossRefGoogle Scholar
8Yan, P.Qian, Q.McCall, J.Langston, J.Ger, Y.Cho, J. and Hainsey, B.Proc. SPIE 2621 (1995) p. 158.CrossRefGoogle Scholar
9Haight, R.Hayden, D.Longo, P.Neary, T. and Wagner, A.Proc. SPIE 3546 (1998) p. 477.CrossRefGoogle Scholar
10Haight, R.Hayden, D.Longo, P.Neary, T. and Wagner, A.J. Vac. Sci. Technol. B17 (6) (1999) p. 3137.CrossRefGoogle Scholar
11Backus, S.Bartels, R.Thompson, S.Dollinger, R.Kapteyn, H.C. and Murnane, M.M.Opt. Lett. 26 (2001) p. 465.CrossRefGoogle Scholar
12Wagner, A.Haight, R. and Longo, P.Proc. SPIE 4889 (2002) p. 457.CrossRefGoogle Scholar
13Wagner, A.Haight, R.Longo, P.Schmidt, M. and Flanigan, P.Microlithography World 12 (2003) p. 6.Google Scholar
14Haight, R.Longo, P. and Wagner, A.J. Vac. Sci. Technol. A21 (2003) p. 649.CrossRefGoogle Scholar
15Mulcahy, C.P.A.Eggeling, J. and Jones, T.S.Chem. Phys. Lett. 288 (1998) p. 203.CrossRefGoogle Scholar
16Nitzzen, A. and Brus, L.E.J. Chem. Phys. 75 (1981) p. 2205.CrossRefGoogle Scholar
17Haight, R.Wagner, A.Longo, P.Lim, D.J. Mod. Opt. 51 (2004) p. 2781.CrossRefGoogle Scholar
18Misogutti, L.Backus, S.Durfee, C.G.Bartels, R.Murnane, M.M. and Kapteyn, H.C.Phys. Rev. Lett. 87 013601–1 (2001).CrossRefGoogle Scholar
19Xiaoshi, Z.Lytle, A.Popmintchev, T.Paul, A.Wagner, N.Murnane, M.Kapteyn, H. and Christov, I.Opt. Lett. 30 (2005) p. 1971.Google Scholar