Published online by Cambridge University Press: 09 February 2018
Heat-assisted magnetic recording (HAMR) is the next-generation technology that is required to deliver areal densities in excess of 2 terabit/in2 for high-capacity, low-cost hard drives.The recording process relies on spatially and temporally localized heating of the media surface to lower its coercivity during the magnetic writing process. This scheme drives substantial changes to the recording head write element architecture, combining the conventional electromagnet structure with integrated optical light delivery layers, focusing optics, and plasmonic nanostructures to generate subwavelength optical spots. Power losses associated with the strong optical fields required for heating the media can cause local temperatures in excess of 400°C at the recording head surface. Coupled with high pressures, an oxidative/corrosive air-bearing environment, and a sub-3 nm head-media spacing, this introduces new challenges for the functional materials in recording heads required to balance performance and long-term reliability demands. Here, we briefly review specific challenges associated with HAMR heads, highlighting the major requirements, failure modes, and needed innovations for the near-field transducer and optical-waveguide subsystems.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.