Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T17:11:09.813Z Has data issue: false hasContentIssue false

Microstructured Polymer Adhesive Feet for Climbing Robots

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Novel insect-foot–inspired materials may enable future robots to walk on surfaces regardless of the direction of gravity. Mini-Whegs™, a small robot that uses four wheel-legs for locomotion, was converted to a wall-walking robot with compliant, adhesive feet. First, the robot was tested with conventional adhesive feet. Then a new, reusable insect-inspired adhesive was tested on the robot. This structured polymer adhesive has less adhesive strength than conventional pressure-sensitive adhesives, but it has two important advantages: the foot material maintains its properties for more walking cycles before becoming contaminated, and the feet can then be washed and reused with similar results, which is not feasible with conventional adhesives. After the addition of a tail and widening the feet, the robot is capable of ascending vertical smooth glass surfaces using the structured polymer adhesive.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Guo, L., Rogers, K., Kirkham, R., in Proc. Int. Conf. on Robotics and Automation Vol. 3 (IEEE, San Diego, CA, 1994) pp. 24952500.Google Scholar
2.Bretl, T. et al., in Proc. Int. Symp. on Experimental Robotics (ISER, Singapore, 2004).Google Scholar
3.Hirose, S., Kawabe, K., in Proc. Int. Conf. on Walking and Climbing Robots (CLAWAR, Brussels, Belgium, 1998).Google Scholar
4.Yano, T., Suwa, T., Murakami, M., Yamamoto, T., in Proc. Int. Conf. on Intelligent Robots and Systems (IROS, Grenoble, France, 1997) pp. 249254.Google Scholar
5.Tummala, R. Lal et al., IEEE Robotics and Automation Magazine 9, 10 (December 2002).CrossRefGoogle Scholar
6.Xiao, J., Morris, W., Chakravarthy, N., Calle, A., Proc. SPIE 6230, 62301 (2006).CrossRefGoogle Scholar
7.Frazier, S.F. et al., J. Comp. Physiol. A 185, 157 (1999).CrossRefGoogle Scholar
8.Sangbae, K., Asbeck, A.T., Cutkosky, M.R., Provancher, W.R., in Proc. Int. Conf. on Advanced Robotics (ICAR '05, Seattle, WA, 2005) pp. 601606.Google Scholar
9.Autumn, K. et al., Nature 405, 681 (2000).CrossRefGoogle Scholar
10.Langer, M.G., Ruppersberg, J.P., Gorb, S., in Proc. R. Soc. London, Ser. B 271, 2209 (2004).CrossRefGoogle Scholar
11.Gorb, S., Varenberg, M., Peressadko, A., Tuma, J., J. R. Soc. Interface 4, 271 (2006).CrossRefGoogle Scholar
12.Geim, A.K. et al., Nature Mater. 2, 461 (2003).CrossRefGoogle Scholar
13.Peressadko, A., Gorb, S.N., J. Adhes. 80, 247 (2004).CrossRefGoogle Scholar
14.Menon, C., Murphy, M., Sitti, M., in Proc. IEEE ROBIO ‘04 (Shenyang, China, 2004).Google Scholar
15. “Unlocking the Secrets of Animal Locomotion,” University of California, Berkeley, Press Release, www.berkeley.edu/news/media/releases/2002/09/rfull/robots.html (accessed May 2007).Google Scholar
16.Niederegger, S., Gorb, S., J. Insect Physiol. 49, 611 (2003).CrossRefGoogle Scholar
17.Quinn, R.D. et al., Int. J. Robotics Res. 3, 169 (2003).CrossRefGoogle Scholar
18.Quinn, R.D., Kingsley, D.A., Offi, J., Ritzmann, R.E., in Proc. Int. Conf. on Intelligent Robots and Systems (IROS ‘02 Lausanne, Switzerland, 2002) pp. 26522657.Google Scholar
19.Martin-Alvarez, A. et al., in Proc. 2nd World Automation Congress (WAC ‘96, Montpellier, France, 1996).Google Scholar
20.Saranli, U., Buehler, M., Koditschek, D., Int. J. Robotics Res. 20 (7), 616 (2001).CrossRefGoogle Scholar
21.Morrey, J.M. et al., in Int. Conf. on Intelligent Robots and Systems (IROS ‘03, Las Vegas, USA. 2003) pp. 8287.Google Scholar
22.Daltorio, K.A. et al., in Int. Conf. on Intelligent Robots and Systems (IROS ‘05, Edmonton, Canada, 2005) pp. 36483653.Google Scholar
23.Wei, T.E. et al., in Int. Conf. on Climbing and Walking Robots (CLAWAR ‘06, Brussels, Belgium, 2006).Google Scholar
24.Wu, S., J. Polym. Sci. C34, 19 (1971).Google Scholar
25.Kendall, K., J. Phys. D: Appl. Phys. 8, 1449 (1975).CrossRefGoogle Scholar
26.Daltorio, K.A. et al., in Proc. Int. Conf. on Climbing and Walking Robots (CLAWAR ‘05, London, 2005).Google Scholar
27.Ritzmann, R.E., Quinn, R.D., Fischer, M.S., Arthropod Struct. Dev. 33, 361 (2004).CrossRefGoogle Scholar
28.Bauer., A.M.J. Morphol. 235, 41 (1998).3.0.CO;2-R>CrossRefGoogle Scholar