Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T23:39:50.199Z Has data issue: false hasContentIssue false

New Frontiers of Metamaterials: Design and Fabrication

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Artificially engineered metamaterials have emerged with properties and functionalities previously unattainable in natural materials. The scientific breakthroughs made in this new class of electromagnetic materials are closely linked with progress in developing physics-driven design and novel parallel fabrication methods. For example, a smooth superlens has been demonstrated with 30-nm imaging resolution, or 1/12 of the corresponding wavelength, far below the diffraction limit. Similarly, a photoswitchable optical negative-index material has been printed, showing a remarkable tuning range of refractive index in the communication wavelength. New frontiers are being explored as intrinsic limitations challenge the scaling of microwave metamaterial designs to optical frequencies. These novel metamaterials promise an entire new generation of passive and active optical elements, such as paper-thin superlenses and modulators.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mater. Today 11, 4045 (2008).CrossRefGoogle Scholar
2.Smith, D.R., Pendry, J.B., Wiltshire, M.C.K., Science 305, 788 (2004).CrossRefGoogle Scholar
3.Shelby, R.A., Smith, D.R., Schultz, S., Science 292, 77 (2001).CrossRefGoogle Scholar
4.Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., Phys. Rev. Lett. 84, 4184 (2000).CrossRefGoogle Scholar
5.Greegor, R.B., Parazzoli, C.G., Li, K., Tanielian, M.H., Appl. Phys. Lett. 82, 2356 (2003).CrossRefGoogle Scholar
6.Hoffman, A.J., Alekseyev, L., Howard, S.S., Franz, K.J., Wasserman, D., Podolskiy, V.A., Narimanov, E.E., Sivco, D.L., Gmachl, C., Nat. Mater. 6 946 (2007).CrossRefGoogle Scholar
7.Lezec, H.J., Dionne, J.A., Atwater, H.A., Science 316, 430 (2007).CrossRefGoogle Scholar
8.Yen, T.J., Padilla, W.J., Fang, N., Vier, D.C., Smith, D.R., Pendry, J.B., Basov, D.N., Zhang, X., Science 303, 1494 (2004).CrossRefGoogle Scholar
9.Wu, W., Yu, Z.N., Wang, S.Y., Williams, R.S., Liu, Y.M., Sun, C., Zhang, X., Kim, E., Shen, Y.R., Fang, N.X., Appl. Phys. Lett. 90, 063107 (2007).CrossRefGoogle Scholar
10.Zhou, J., Koschny, T., Kafesaki, M., Economou, E.N., Pendry, J.B., Soukoulis, C.M., Phys. Rev. Lett. 95, 223902 (2005).CrossRefGoogle Scholar
11.Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C.M., Linden, S., Science 312, 892 (2006).CrossRefGoogle Scholar
12.Dolling, G., Wegener, M., Soukoulis, C.M., Linden, S., Opt. Lett. 32, 53 (2007).CrossRefGoogle Scholar
13.Kim, E., Shen, Y.R., Wu, W., Ponizovskaya, E., Yu, Z., Bratkovsky, A.M., Wang, S.Y., Williams, R.S., Appl. Phys. Lett. 91, 173105 (2007).CrossRefGoogle Scholar
14.Fang, N., Liu, Z. W., Yen, T.J., Zhang, X., Opt. Express 11, 682 (2003); available at http://www.opticsinfobase.org/abstract.cfm?URI=oe-11–7–682.CrossRefGoogle Scholar
15.Shalaev, V.M., Cai, W.S., Chettiar, U.K., Yuan, H.K., Sarychev, A.K., Drachev, V.P., Kildishev, A.V., Opt. Lett. 30, 3356 (2005).CrossRefGoogle Scholar
16.Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A., Nature 391, 667 (1998).CrossRefGoogle Scholar
17.Nie, S.M., Emory, S.R., Science 275, 1102 (1997).CrossRefGoogle Scholar
18.Pendry, J.B., Martin-Moreno, L., Garcia-Vidal, F.J., Science 305, 847 (2004).CrossRefGoogle Scholar
19.Williams, C.R., Andrews, S.R., Maier, S.A., Fernandez-Dominguez, A.I., Martin Moreno, L., Garcia-Vidal, F.J., Nat. Photonics 2, 175 (2008).CrossRefGoogle Scholar
20.Elser, J., Podolskiy, V.A., Phys. Rev. Lett. 100, 066402 (2008).CrossRefGoogle Scholar
21.Pendry, J.B., Phys. Rev. Lett. 85, 3966 (2000).CrossRefGoogle Scholar
22.Fang, N., Lee, H., Sun, C., Zhang, X., Science 308, 534 (2005).CrossRefGoogle Scholar
23.Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G., Hillenbrand, R., Science 313, 1595 (2006).CrossRefGoogle Scholar
24.Chaturvedi, P., Wu, W., Logeeswaran, V., Yu, Z., Xiong, Y., Islam, S., Wang, S.-Y., Zhang, X., Fang, N., paper presented at Photonic Metamaterials: From Random to Periodic, sponsored by the Optical Society of America (OSA), Jackson Hole, Wyoming, 4–7 June 2007.Google Scholar
25.Lee, H., Xiong, Y., Fang, N., Srituravanich, W., Durant, S., Ambati, M., Sun, C., Zhang, X., New J. Phys. 7, 255 (2005).CrossRefGoogle Scholar
26.Chaturvedi, P., Fang, N., in Mater. Res. Soc. Symp. Proc. 919, Wang, S.-Y., Fang, N.X., Thylen, L., Islam, M.S., Eds. (Materials Research Society, Warrendale, PA, 2006), p. 0919-J04–07.Google Scholar
27.Shin, H., Fan, S.H., Phys. Rev. Lett. 96, 073907 (2006).CrossRefGoogle Scholar
28.Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., Zhou, J.F., Koschny, T., Soukoulis, C.M., Phys. Rev. Lett. 95, 203901 (2005).CrossRefGoogle Scholar
29.Enkrich, C., Perez-Willard, R., Gerthsen, D., Zhou, J.F., Koschny, T., Soukoulis, C.M., Wegener, M., Linden, S., Adv. Mater. 17, 2547 (2005).CrossRefGoogle Scholar
30.Wu, W., Kim, E., Ponizovskaya, E., Liu, Y., Yu, Z., Fang, N., Shen, Y.R., Bratkovsky, A.M., Tong, W., Sun, C., Zhang, X., Wang, S.Y., Williams, R.S., Appl. Phys. A 87, 143 (2007).CrossRefGoogle Scholar
31.Jung, G.Y., Johnston-Halperin, E., Wu, W., Yu, Z.N., Wang, S.Y., Tong, W.M., Li, Z.Y., Green, J.E., Sheriff, B.A., Boukai, A., Bunimovich, Y., Heath, J.R., Williams, R.S., Nano Lett. 6, 351 (2006).CrossRefGoogle Scholar
32.Hsu, K.H., Schultz, P.L., Ferreira, P.M., Fang, N.X., Nano Lett. 7, 446 (2007).CrossRefGoogle Scholar
33.Basile, L., Hawoong, H., Czoschke, P., Chiang, T.C., Appl. Phys. Lett. 84, 4995 (2004).CrossRefGoogle Scholar
34.Logeeswaran, V.J., Chan, M.L., Bayam, Y., Saif Islam, M., Horsley, D.A., Li, X., Wu, W., Wang, S.Y., Williams, R.S., Appl. Phys. A 87, 187 (2007).CrossRefGoogle Scholar
35.Galisteo, J.F., Garcia-Santamaria, F., Golmayo, D., Juarez, B.H., Lopez, C., Palacios, E., J. Opt. A: Pure Appl. Opt. 7, S244 (2005).CrossRefGoogle Scholar
36.Menon, L., Lu, W., Friedman, A., Bennett, S., Heiman, D., Sridhar, S., paper presented at the APS March Meeting, New Orleans, LA, 10–14 March 2008.Google Scholar
37.Norris, D.J., Vlasov, Y.A., Adv. Mater. 13, 371 (2001).3.0.CO;2-K>CrossRefGoogle Scholar
38.Kong, J.A., Electromagnetic Wave Theory (EMW Publishing, Cambridge, MA, 1998).Google Scholar
39.Ramakrishna, S.A., Pendry, J.B., Wiltshire, M.C.K., Stewart, W.J., J. Mod. Opt. 50, 1419 (2003).CrossRefGoogle Scholar
40.Salandrino, A., Engheta, N., Phys. Rev. B 74, 075103 (2006).CrossRefGoogle Scholar
41.Liu, Z.W., Lee, H., Xiong, Y., Sun, C., Zhang, X., Science 315, 1686 (2007)CrossRefGoogle Scholar
42.Zhang, S., Yin, L., Fang, N., in ASME International Mechanical Engineering Congress and Exposition. (ASME, New York, 2007), p. IMECE200744076.Google Scholar
43.Fang, N., Xi, D.J., Xu, J.Y., Ambati, M., Srituravanich, W., Sun, C., Zhang, X., Nat. Mater. 5, 452 (2006).CrossRefGoogle Scholar