Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-28T19:16:36.560Z Has data issue: false hasContentIssue false

Phase Transitions in Thin Block Copolymer Films

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

David Turnbull's experiments and theoretical insights paved the way for much of our modern understanding of phase transitions in materials. In recognition of his contributions, this lecture will concentrate on phase transitions in a material system not considered by Turnbull, thin diblock copolymer films. Well-ordered block copolymer films are attracting increasing interest as we attempt to extend photolithography to smaller dimensions. In the case of diblock copolymer spheres, an ordered monolayer is hexagonal, but the ordered bulk is body-centered cubic (bcc). There is no hexagonal plane in the bcc structure, so a phase transition must occur as n, the number of layers of spheres in the film, increases. How this phase transition occurs with nand how it can be manipulated is the subject of the first part of my presentation. In the second part of the talk, I show that monolayers of diblock copolymer spheres and cylinders undergo order-to-disorder transitions that differ greatly from those of the bulk. These ordered 2D monolayers are susceptible to phonon-generated disorder as well as to thermal generation of defects, such as dislocations, which, while they are line defects in 3D, are point defects in 2D. The results are compared to the theories of melting of 2D crystals (spheres) and of 2D smectic liquid crystals (cylinders), a comparison that will allow us to understand most, but not all, of the features of these order-disorder transitions that occur as the temperature is increased.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Turnbull, D., Autobiography, Materials Research Society; www.mrs.org/s_mrs/bin.asp?CID=4746&DID=164500&DOC=FILE.PDF..Google Scholar
2.Cochran, E.W., Garcia-Cervera, C.J., Fredrickson, G.H., Macromolecules 39, 2449 (2006).CrossRefGoogle Scholar
3.Dai, K.H., Kramer, E.J., Polymer 35, 157 (1994).CrossRefGoogle Scholar
4.Matsen, M.W., J. Phys. Condens. Matter 14, R21 (2002).CrossRefGoogle Scholar
5.Thomas, E.L., Kinning, D.J., Alward, D.B., Henkee, C.S., Macromolecules 20, 2934 (1987).CrossRefGoogle Scholar
6.Stein, G.E., PhD thesis, University of California, Santa Barbara (2006).Google Scholar
7.Stein, G.E., Cochran, E.W., Katsov, K., Fredrickson, G.H., Kramer, E.J., Li, X., Wang, J., Phys. Rev. Lett. 98, 158302 (2007).CrossRefGoogle Scholar
8.Stein, G.E., Kramer, E.J., Li, X., Wang, J., Macromolecules 40, 2453 (2007).CrossRefGoogle Scholar
9.Fredrickson, G.H., The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, UK, 2006).Google Scholar
10.Misha, V., Hur, S., Cochran, E.W., Stein, G.E., Fredrickson, G.H., Kramer, E.J., Macromolecules 43, 1942 (2010).CrossRefGoogle Scholar
11.Segalman, R.A., Mater. Sci. Eng. R 48, 1919 (2005).CrossRefGoogle Scholar
12.Hawker, C.J., Russell, T.P., MRS Bull. 30, 953 (2005).CrossRefGoogle Scholar
13.Park, M., Harrison, C., Chaikin, P.M., Register, R.A., Adamson, D.H., Science 276, 1401 (1997).CrossRefGoogle Scholar
14.Segalman, R.A., Hexemer, A., Hayward, R.C., Kramer, E.J., Macromolecules 36, 3272 (2003).CrossRefGoogle Scholar
15.Segalman, R.A., Hexemer, A., Kramer, E.J., Macromolecules 36, 6831 (2003).CrossRefGoogle Scholar
16.Segalman, R.A., Hexemer, A., Kramer, E.J., Phys. Rev. Lett. 91, 196101 (2003).CrossRefGoogle Scholar
17.Hammond, M.R., Sides, S.W., Fredrickson, G.H., Kramer, E.J., Ruokolainen, J., Hahn, S.F., Macromolecules 36, 8712 (2003).CrossRefGoogle Scholar
18.Kosterlitz, J.M., Thouless, D.J., J. Phys. C: Solid State Phys. 5, L124 (1972).CrossRefGoogle Scholar
19.Kosterlitz, J.M., Thouless, D.J., J. Phys. C: Solid State Phys. 6, 1181 (1973).CrossRefGoogle Scholar
20.Halperin, B.I., Nelson, D.R., Phys. Rev. Lett. 41, 121 (1978).CrossRefGoogle Scholar
21.Nelson, D.R., Halperin, B.I., Phys. Rev. B 19, 2457 (1979).CrossRefGoogle Scholar
22.Young, A.P., Phys. Rev. B 19, 1855 (1979).CrossRefGoogle Scholar
23.Stein, G.E., Kramer, E.J., Li, X., Wang, J., Phys. Rev. Lett., 98, 086101 (2007).CrossRefGoogle Scholar
24.Stein, G.E., Lee, W.-B., Fredrickson, G.H., Kramer, E.J., Li, X., Wang, J., Macromolecules 40, 5791 (2007).CrossRefGoogle Scholar
25.Angelescu, D.E., Harrison, C.K., Trawick, M.L., Register, R.A., Chaikin, P.M., Phys. Rev. Lett. 95, 025702 (2005).CrossRefGoogle Scholar
26.Kramer, E.J., Nature 437, 824 (2005).CrossRefGoogle Scholar
27.Segalman, R.A., Yokoyama, H., Kramer, E.J., Adv. Mater. 13, 1152 (2001).3.0.CO;2-5>CrossRefGoogle Scholar
28.Hammond, M.R., Cochran, E., Fredrickson, G.H., Kramer, E.J., Macromolecules 38, 6575 (2005).CrossRefGoogle Scholar
29.Hammond, M.R., Kramer, E.J., Macromolecules 39, 1538 (2006).CrossRefGoogle Scholar
30.Toner, J., Nelson, D.R., Phys. Rev. B 23, 316 (1981).CrossRefGoogle Scholar