Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T02:47:02.248Z Has data issue: false hasContentIssue false

Photovoltaic devices employing vacuum-deposited perovskite layers

Published online by Cambridge University Press:  07 August 2015

Michele Sessolo
Affiliation:
Instituto de Ciencia Molecular, Universidad de Valencia, Spain; michele.sessolo@uv.es
Cristina Momblona
Affiliation:
Instituto de Ciencia Molecular, Universidad de Valencia, Spain; m.cristina.momblona@uv.es
Lidón Gil-Escrig
Affiliation:
Instituto de Ciencia Molecular, Universidad de Valencia, Spain; lidon.gil@uv.es
Henk J. Bolink
Affiliation:
Instituto de Ciencia Molecular, Universidad de Valencia, Spain; henk.bolink@uv.es
Get access

Abstract

Organic–inorganic perovskites have emerged as one of the most promising materials for future optoelectronics applications, most notably photovoltaics. The achievement of high-efficiency solar cells has been possible mainly through the understanding of the perovskite formation during the solution deposition of thin films. Vacuum deposition methods have also been developed and have intrinsic advantages over solution-based processing, including control over the film thickness and composition, low-temperature processing, and the possibility of preparing multilayer structures. This article summarizes the latest advances in the vacuum deposition of hybrid perovskites, with an emphasis on the application to photovoltaics. Methods for the deposition of perovskite thin films and the performances of the correspondent solar cells are reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I., Nature 517, 476 (2015).Google Scholar
Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I., Nat. Mater. 13, 897 (2014).Google Scholar
Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-B., Duan, H.-S., Hong, Z., You, J., Liu, Y., Yang, Y., Science 345, 542 (2014).Google Scholar
Nie, W., Tsai, H., Asadpour, R., Blancon, J.-C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A., Wang, H.-L., Mohite, A.D., Science 347, 522 (2015).Google Scholar
Moore, D.T., Sai, H., Tan, K.W., Smilgies, D.-M., Zhang, W., Snaith, H.J., Wiesner, U., Estroff, L.A., J. Am. Chem. Soc. 137, 2350 (2015).Google Scholar
Malinkiewicz, O., Roldán-Carmona, C., Soriano, A., Bandiello, E., Camacho, L., Nazeeruddin, M.K., Bolink, H.J., Adv. Energy Mater. 4, 1400345 (2014).CrossRefGoogle Scholar
Chen, C.-W., Kang, H.-W., Hsiao, S.-Y., Yang, P.-F., Chiang, K.-M., Lin, H.-W., Adv. Mater. 26, 6647 (2014).Google Scholar
Chen, Y., Chen, T., Dai, L., Adv. Mater. 27, 1053 (2015).Google Scholar
Liu, M., Johnston, M.B., Snaith, H.J., Nature 501, 395 (2013).CrossRefGoogle Scholar
Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L., Meredith, P., Nat. Photonics 9, 106 (2015).Google Scholar
Malinkiewicz, O., Yella, A., Lee, Y.H., Espallargas, G.M., Graetzel, M., Nazeeruddin, M.K., Bolink, H.J., Nat. Photonics 8, 128 (2013).Google Scholar
Mitzi, D.B., Chondroudis, K., Kagan, C.R., IBM J. Res. Dev. 45, 29 (2001).CrossRefGoogle Scholar
Mitzi, D.B., Chem. Mater. 13, 3283 (2001).CrossRefGoogle Scholar
Era, M., Hattori, T., Taira, T., Tsutsui, T., Chem. Mater. 9, 8 (1997).Google Scholar
Ono, L.K., Wang, S., Kato, Y., Raga, S.R., Qi, Y., Energy Environ. Sci. 7, 3989 (2014).Google Scholar
Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Gratzel, M., Nature 499, 316 (2013).Google Scholar
Era, M., Maeda, K., Tsutsui, T., Thin Solid Films 331, 285 (1998).Google Scholar
Liu, D., Gangishetty, M.K., Kelly, T.L., J. Mater. Chem. A 2, 19873 (2014).Google Scholar
Leyden, M.R., Ono, L.K., Raga, S.R., Kato, Y., Wang, S., Qi, Y., J. Mater. Chem. A 2, 18742 (2014).Google Scholar
Hu, H., Wang, D., Zhou, Y., Zhang, J., Lv, S., Pang, S., Chen, X., Liu, Z., Padture, N.P., Cui, G., RSC Adv. 4, 28964 (2014).Google Scholar
Ng, A., Ren, Z., Shen, Q., Cheung, S.H., Gokkaya, H.C., Bai, G., Wang, J., Yang, L., So, S.K., Djurisic, A.B., Leung, W.W.-F., Hao, J., Chan, W.K., Surya, C., J. Mater. Chem. A (forthcoming).Google Scholar
Sutherland, B.R., Hoogland, S., Adachi, M.M., Kanjanaboos, P., Wong, C.T.O., McDowell, J.J., Xu, J., Voznyy, O., Ning, Z., Houtepen, A.J., Sargent, E.H., Adv. Mater. 27, 53 (2014).Google Scholar
Sutherland, B.R., Hoogland, S., Adachi, M.M., Wong, C.T.O., Sargent, E.H., ACS Nano 8, 10947 (2014).Google Scholar
Richards, J.L., Hart, P.B., Gallone, L.M., J. Appl. Phys. 34, 3418 (1963).Google Scholar
Saltsburg, H., J. Chem. Phys. 42, 1303 (1965).Google Scholar
Mitzi, D.B., Prikas, M.T., Chondroudis, K., Chem. Mater. 11, 542 (1999).Google Scholar
Chondroudis, K., Mitzi, D.B., Brock, P., Chem. Mater. 12, 169 (1999).Google Scholar
Ahmad, S., Hanmandlu, C., Kanaujia, P.K., Prakash, G.V., Opt. Mater. Express 4, 1313 (2014).Google Scholar
Chiarella, F., Zappettini, A., Licci, F., Borriello, I., Cantele, G., Ninno, D., Cassinese, A., Vaglio, R., Phys. Rev. B: Condens. Matter 77, 45129 (2008).Google Scholar
Longo, G., Gil-Escrig, L., Degen, M.J., Sessolo, M., Bolink, H.J., Chem. Commun. 51, 7376 (2015).Google Scholar
Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M., Park, N.-G., Nat. Nanotechnol. 9, 927 (2014).Google Scholar
Zhao, Y., Zhu, K., J. Phys. Chem. Lett. 5, 4175 (2014).CrossRefGoogle Scholar
Pistor, P., Borchert, J., Fränzel, W., Csuk, R., Scheer, R., J. Phys. Chem. Lett. 5, 3308 (2014).Google Scholar
Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., Gigli, G., De Angelis, F., Mosca, R., Chem. Mater. 25, 4613 (2013).CrossRefGoogle Scholar
Dar, M.I., Arora, N., Gao, P., Ahmad, S., Grätzel, M., Nazeeruddin, M.K., Nano Lett. 14, 6991 (2014).Google Scholar
Ng, T.-W., Chan, C.-Y., Lo, M.-F., Guan, Z.Q., Lee, C.-S., J. Mater Chem. A 3, 9081 (2015).Google Scholar
Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Grätzel, M., Park, N.-G., Sci. Rep. 2, 591 (2012).Google Scholar
Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J., Science 338, 643 (2012).Google Scholar
Polander, L.E., Pahner, P., Schwarze, M., Saalfrank, M., Koerner, C., Leo, K., APL Mater. 2, 081503 (2014).Google Scholar
Kim, B.-S., Kim, T.-M., Choi, M.-S., Shim, H.-S., Kim, J.-J., Org. Electron. 17, 102 (2014).Google Scholar
Momblona, C., Malinkiewicz, O., Roldán-Carmona, C., Soriano, A., Gil-Escrig, L., Bandiello, E., Scheepers, M., Edri, E., Bolink, H.J., APL Mater. 2, 081504 (2014).CrossRefGoogle Scholar
Roldán-Carmona, C., Malinkiewicz, O., Soriano, A., Mínguez Espallargas, G., Garcia, A., Reinecke, P., Kroyer, T., Dar, M.I., Nazeeruddin, M.K., Bolink, H.J., Energy Environ. Sci. 7, 994 (2014).Google Scholar
Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M., Han, H., Science 345, 295 (2014).Google Scholar
Laban, W.A., Etgar, L., Energy Environ. Sci. 6, 3249 (2013).Google Scholar