Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T02:11:58.183Z Has data issue: false hasContentIssue false

Polymer Nanocomposites for Biomedical Applications

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Bionanocomposites have established themselves as a promising class of hybrid materials derived from natural and synthetic biodegradable polymers and organic/inorganic fillers. Different chemistries and compositions can lead to applications from tissue engineering to load-bearing composites for bone reconstruction. A critical factor underlying biomedical nanocomposite properties is interaction between the chosen matrix and the filler. This ar ticle discusses current efforts and key research challenges in the development of these ma te rials for use in potential biomedical applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ruiz-Hitzky, E., Darder, M., Aranda, P., J. Mater. Chem. 15, 3650 (2005).CrossRefGoogle Scholar
2.Alivisatos, A.P., Science 271, 933 (1996).Google Scholar
3.Daniels, A.U., Chang, M.K.O., Andriano, K.P., J. Appl. Biomater. 1 (1), 57 (1990).Google Scholar
4.Bradley, G.W. et al. , J. Bone Joint Surg. 61 (6), 866 (1979).Google Scholar
5.Terjesen, T., Apalset, K., J. Orthop. Res. 6, 293 (1988).CrossRefGoogle Scholar
6.Gillett, N., Brown, S.A., Dumbleton, J.H., Pool, R.P., Biomaterials 6 (2), 113 (1985).Google Scholar
7.Uchida, A. et al. , J. Bone Joint Surg. Br. 72-B (2), 298 (1990).CrossRefGoogle Scholar
8.Cooke, F.W., Clin. Orthop. Relat. Res. 276, 135 (1992).CrossRefGoogle Scholar
9.Yamaguchi, I. et al. , J. Biomed. Mater. Res. 55 (1), 20 (2001).Google Scholar
10.Ogawa, K. et al. , Macromolecules 17, 973 (1984).CrossRefGoogle Scholar
11.Okuyama, K. et al. , Int. J. Biol. Macromol. 26 (4), 285 (1999).Google Scholar
12.Kim, H.-W., Kim, H.-E., Salih, V., Biomaterials 26 (25), 5221 (2005).CrossRefGoogle Scholar
13.Cenni, E. et al. , J. Biomater. Sci. Polym. Ed. 11, 685 (2000).Google Scholar
14.Mann, S., Ozin, G.A., Nature 382, 313 (1996).CrossRefGoogle Scholar
15.Zerwekh, J.E. et al. , J. Orthop. Res. 10 (4), 562 (1992).CrossRefGoogle Scholar
16.Zhao, F. et al. , Biomaterials 23 (15), 3227 (2002).CrossRefGoogle Scholar
17.Drury, J.L., Mooney, D.J., Biomaterials 24 (24), 4337 (2003).CrossRefGoogle Scholar
18.Lin, H.-R., Yeh, Y.-J., J. Biomed. Mater. Res. Part B: Appl. Biomater. 71B (1), 52 (2004).CrossRefGoogle Scholar
19.Ito, M., Hidaka, Y., Nakajima, M., Yagasaki, H., Kafrawy, A.H., J. Biomed. Mater. Res. 45 (3), 204 (1999).3.0.CO;2-4>CrossRefGoogle Scholar
20.Du, C. et al. , J. Biomed. Mater. Res. 42 (4), 540 (1998).3.0.CO;2-2>CrossRefGoogle Scholar
21.Mller-Mai, C.M., Stupp, S.I., Voigt, C., Gross, U., J. Biomed. Mater. Res. 29 (1), 9 (1995).CrossRefGoogle Scholar
22.Boanini, E. et al. , Biomaterials 27 (25), 4428 (2006).Google Scholar
23.Edlund, U., Albertsson, A.-C., Adv. Polym. Sci. 157, 67 (2002).Google Scholar
24.Kronenthal, R.L., Polymer Medicine and Surgery (Plenum Press, New York, 1975) p. 119.CrossRefGoogle Scholar
25.Tsuji, H., Ikada, Y., Polym. Degrad. Stab. 67, 179 (2000).CrossRefGoogle Scholar
26.Bleach, N.C. et al. , Biomaterials 23 (7), 1579 (2002).CrossRefGoogle Scholar
27.Alexander, H., Langrana, N., Massengill, J., Weiss, A., J. Biomech. 14 (6), 377 (1981).CrossRefGoogle Scholar
28.Majola, A. et al. , J. Mater. Sci. Mater. Med. 3 (1), 43 (1991).Google Scholar
29.Krikorian, V., Pochan, D.J., Chem. Mater. 15 (22), 4317 (2003).CrossRefGoogle Scholar
30.Krikorian, V., Pochan, D.J., Macromolecules 37 (17), 6480 (2004).CrossRefGoogle Scholar
31.Krikorian, V., Pochan, D.J., Macromolecules 38 (15), 6520 (2005).CrossRefGoogle Scholar
32.Zhang, J., Tsuji, H., Noda, I., Ozaki, Y., Macromolecules 37 (17), 6433 (2004).Google Scholar
33.Zhang, J., Tsuji, H., Noda, I., Ozaki, Y.J., Phys. Chem. B 108 (31), 11514 (2004).CrossRefGoogle Scholar
34.Loizou, E. et al. , Macromolecules 38 (6), 2047 (2005).Google Scholar
35.Zong, X. et al. , Polymer 43 (16), 4403 (2002).Google Scholar
36.Alexandre, M., Dubois, P., Mater. Sci. Eng. R 28, 1 (2000).CrossRefGoogle Scholar
37.Lee, Y.H. et al. , Biomaterials 26 (16), 3165 (2005).CrossRefGoogle Scholar
38.Hule, R.A., Pochan, D.J., J. Polym. Sci. Part B: Polym. Phys. 45, 239 (2007).CrossRefGoogle Scholar
39.Krikorian, V. et al. , J. Polym. Sci. Part B: Polym. Phys. 40, 2579 (2002).CrossRefGoogle Scholar
40.Ozbas, B. et al. , Macromolecules 37 (19), 7331 (2004).CrossRefGoogle Scholar
41.Lailach, G.E., Brindley, G.W., Clays Clay Miner. 17, 95 (1969).Google Scholar
42.Wei, M. et al. , J. Mater. Chem. 15, 1197 (2005).Google Scholar
43.Xu, R., Manias, E., Snyder, A.J., Runt, J., Macromolecules 34 (2), 337 (2001).Google Scholar
44.Wilson, K.S., Zhang, K., Antonucci, J.M., Biomaterials 26 (25), 5095 (2005).CrossRefGoogle Scholar
45.Kannan, R.Y., Salacinski, H.J., Butler, P.E., Seifalian, A.M., Acc. Chem. Res. 38 (11), 879 (2005).CrossRefGoogle Scholar