Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T14:40:11.911Z Has data issue: false hasContentIssue false

Process Integration for Nonvolatile Ferroelectric Memory Fabrication

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The remanent-polarization states of ferroelectric capacitors have long been of interest for nonvolatile storage of digital data. A simple memory array can be formed by perpendicular rows and columns of conductors with a ferroelectric capacitor at each crosspoint. In the simplest geometry, these conductors also are the capacitor electrodes on either side of a ferroelectric layer. Each capacitor represents one bit of digital data. If a voltage of V0 is required to write a capacitor, then data can be written to a specific bit by applying V0/2 and –V0/2 to the appropriate row and column. Such ferroelectric memory arrays were constructed as early as the 1950s. However, due to the breath of the ferroelectric transition, they were not successful because during the write of a specific capacitor, the V0/2 voltage signals disturb the polarization in other capacitors. This is in contrast to the successful use of the analogous ferromagnetic crosspoint arrays, which are familiar as the core memories of early computer technology.

Type
Electroceramic Thin Films Part I: Processing
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Merz, W.J. and Anderson, J.R., Bell Laboratory Record (September 1955) p. 335.Google Scholar
2.Evans, J.T. and Womack, R., IEEE J. Solid-State Circuits 23 (1988) p. 1171.CrossRefGoogle Scholar
3.Cuppens, R., Larsen, P.K., and Spierings, G.A.C.M., Microelectron. Eng. 19 (1992) p. 245.CrossRefGoogle Scholar
4.Moazzami, R., Maniar, P.D., Jones, R.E., and Mogab, C.J., VLSI Technol. Symp. Dig. (1994) p. 55.Google Scholar
5.Jones, R.E. Jr., Maniar, P.D., Moazzami, R., Zurcher, P., Witowski, J.Z., Lii, Y.T., Chu, P., and Gillespie, S.J., Thin Solid Films 270 (1995) p. 584.CrossRefGoogle Scholar
6.Olowolafe, J.O., Jones, R.E. Jr., Campbell, A.C., Hedge, R.I., Mogab, C.J., and Gregory, R.B., Appl. Phys. Lett. 73 (1993) p. 1764.Google Scholar
7.Chung, I., Lee, J.K., Lee, W.I., Chung, C.W., and Desu, S.B., in Ferroelectric Thin Films IV, edited by Tuttle, B.A., Desu, S.B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, 1995) p. 249.Google Scholar
8.Al-Shareef, H.N., Chen, Y.L., Auciello, O., and Kingon, A.I., in Ferroelectric Thin Films IV, edited by Tuttle, B.A., Desu, S.B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, 1995) p. 229.Google Scholar
9.Al-Shareef, H.N., Bellur, K.R., Auciello, O., and Kingon, A.I., Thin Solid Films 256 (1995) p. 73.CrossRefGoogle Scholar
10.Nakamura, T., Nakao, Y., Kamisawa, A., and Takasu, H., Appl. Phys. Lett. 65 (1994) p. 1522.CrossRefGoogle Scholar
11.Ramesh, R., Chan, W.K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J.M., Keramidas, V.G., Fork, D.F., Lee, J., and Safari, A., Thin Solid Films 61 (1992) p. 1537.Google Scholar
12.Eom, C.B., Van Dover, R.B., Phillips, J.M., Fleming, R.M., Cava, R.J., Marshall, J.H., Werder, D.J., Chen, C.H., and Fork, D.K., in Ferroelectric Thin Films III, edited bv Mvers, E.R., Tuttle, B.A., Desu, S.B., and Larsen, P.K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, 1993) p. 145.Google Scholar
13.Lee, J., Ramesh, R., and Keramidas, V.G., in Ferroelectric Thin Films IV, edited by Tuttle, B.A., Desu, S.B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, 1995) p. 67.Google Scholar
14.Sameshima, K., Nakamura, T., Hoshiba, K., Kamisawa, A., Atsuki, T., Soyama, N., and Ogi, K., Jpn. J. Appl. Phys. 32 (1993) p. 4144.CrossRefGoogle Scholar
15.Lesaicherre, P-Y., Yamamichi, S., Yamaguchi, H., Takemura, K., Watanabe, H., Tokashiki, K., Satoh, K., Sakuma, T., Yoshida, M., Ohnishi, S., Nakajima, K., Shibahara, K., Miyasaka, Y., and Ono, H., IEDM Technol. Dig. (1994) p. 831.Google Scholar
16.Parikh, N.R., Stephen, J.T., Swanson, M.L., and Myers, E.R., in Ferroelectric Thin Films I, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, 1990) p. 193.Google Scholar
17.Oehrlein, G.S. and Remletski, J.F., IBM J. Res. Develop. 36 (2) (1992) p. 140.CrossRefGoogle Scholar
18.Steinbruchel, C., Mater. Sci. Technol. 8 (1992) p. 565.CrossRefGoogle Scholar
19.Rossangel, S.M., Cuomo, J.J., and Westwook, W.D., Handbook of Plasma Processing Technology (Noyes Publications, Park Ridge, NJ, 1990).Google Scholar
20.Vijay, D.P., Desu, S.B., and Pan, W., J. Electrochem. Soc. 140 (1993) p. 2635.CrossRefGoogle Scholar
21.Mocella, M.T., Solid State Technol. (April 1991) p. 64.Google Scholar
22.Pan, W., Desu, S.B., Yoo, I.K., and Vijay, D.P., J. Mater. Res. 9 (1994) p. 2976.Google Scholar
23.Pang, S.W., Solid State Technol. 27 (1984) p. 249.Google Scholar
24.Flamm, D.L., Cowan, P.L., and Golovchenko, J.A., J. Vac. Sci. Technol. 17 (1980) p. 1341.Google Scholar
25.Deepe, H.R., Hasler, B., and Hopfner, J., Solid State Electron. 20 (1977) p. 51.CrossRefGoogle Scholar