Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T01:55:56.809Z Has data issue: false hasContentIssue false

Processing science of advanced thermal-barrier systems

Published online by Cambridge University Press:  09 October 2012

Sanjay Sampath
Affiliation:
Center for Thermal Spray Research, Department of Materials Science and Engineering, Stony Brook University; sanjay.sampath@stonybrook.edu
Uwe Schulz
Affiliation:
German Aerospace Center, Institute of Materials Research, Germany; Uwe.Schulz@dlr.de
Maria Ophelia Jarligo
Affiliation:
Institute of Energy and Climate Research (IEK-1), Forschungszentrum Jülich GmbH, Germany; m.o.jarligo@fz-juelich.de
Seiji Kuroda
Affiliation:
National Institute for Materials Science, Japan; Kuroda.Seiji@nims.go.jp
Get access

Abstract

Thermal-barrier coatings (TBCs) are complex, defected, thick films made of zirconia-based refractory ceramic oxides. Their widespread applicability has necessitated development of high throughput, low cost materials manufacturing technologies. Thermal plasmas and electron beams have been the primary energy sources for processing of such systems. Electron-beam physical vapor deposition (EBPVD) is a sophisticated TBC fabrication technology for rotating parts of aero engine components, while atmospheric plasma sprays (APS) span the range from rotating blades of large power generation turbines to afterburners in supersonic propulsion engines. This article presents a scientific description of both contemporary manufacturing processes (EBPVD, APS) and emerging TBC deposition technologies based on novel extensions to plasma technology (suspension spray, plasma spray-PVD) to facilitate novel compliant and low thermal conductivity coating architectures. TBCs are of vital importance to both performance and energy efficiency of modern turbines with concomitant needs in process control for both advanced design and reliable manufacturing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kulkarni, A., Wang, Z., Nakamura, T., Sampath, S., Goland, A., Herman, H., Allen, J., Ilavsky, J., Long, G., Frahm, J., Steinbrech, R.W., Acta Mater. 51, 2457 (2003).CrossRefGoogle Scholar
Flores Renteria, A., Saruhan, B., Schulz, U., Raetzer-Scheibe, H.-J., Haug, J., Wiedenmann, A., Surf. Coat. Technol. 201, 2611 (2006).CrossRefGoogle Scholar
Evans, A.G., Mumm, D.R., Hutchinson, J.W., Meier, G.H., Pettit, F.S., Prog. Mater. Sci. 46 (5) 505 (2001).CrossRefGoogle Scholar
Liu, Y., Nakamura, T., Dwivedi, G., Valarezo, A., Sampath, S., J. Am. Ceram. Soc. 91 (12), 4036 (2008).CrossRefGoogle Scholar
Liu, Y., Nakamura, T., Srinivasan, V., Vaidya, A., Gouldstone, A., Sampath, S., Acta Mater. 55, 4667 (2007).CrossRefGoogle Scholar
Johnson, C.A., Ruud, J.A., Bruce, R., Wortman, D., Surf. Coat. Technol. 108, 80 (1998).CrossRefGoogle Scholar
Taylor, T.A., US Patent 5, 073, 433 (1989).Google Scholar
Gray, D.M., Lau, Y.C., Johnson, C.A., Boron, M.P., Nelson, W.A., US Patent 5,830,586 (1996).Google Scholar
Fauchais, P., Montavon, G., J. Therm. Spray Technol. 19 (1–2), 226 (2010).CrossRefGoogle Scholar
Hass, D.D., Wadley, H.N.G., US Patent Appl. 2008/0131611 A1 (2008).Google Scholar
Von Niessen, K., Gindrat, M., J. Therm. Spray Technol. 20 (4), 736 (2011).CrossRefGoogle Scholar
Schulz, U., Saruhan, B., Fritscher, K., Leyens, C., Int. J. Appl. Ceram. Technol. 1, 302 (2004).CrossRefGoogle Scholar
Flores Renteria, A., Saruhan, B., Ilavsky, J., Allen, A.J., Surf. Coat. Tech. 201 (8) 4781 (2007).CrossRefGoogle Scholar
Schulz, U., Terry, S.G., Levi, C.G., Mater. Sci. Eng. A 360, 319 (2003).CrossRefGoogle Scholar
Vaidya, A., Srinivasan, V., Streibl, T., Friis, M., Chi, W., Sampath, S., Mater. Sci. Eng., A 497, 239 (2008).CrossRefGoogle Scholar
Kuroda, S., Clyne, T.W., Thin Solid Films 200 (1), 49 (1991).CrossRefGoogle Scholar
Nakamura, T., Liu, Y., Int. J. Solids Struct. 44 (6), 1990 (2007).CrossRefGoogle Scholar
Chi, W., Sampath, S., Wang, H., J. Am. Ceram. Soc. 91 (8), 2636 (2008).CrossRefGoogle Scholar
Dwivedi, G., Nakamura, T., Sampath, S., J. Am. Ceram. Soc. 94, 104 (2011).Google Scholar
Guo, H.B., Murakami, H., Kuroda, S., Mater. Trans. 47 (42), 308 (2006).Google Scholar
Guo, H.B., Vaßen, R., Stöver, D., Surf. Coat. Technol. 186 (3), 353 (2004).CrossRefGoogle Scholar
Ito, K., Kuriki, H., Watanabe, M., Kuroda, S., Enoki, M., Mater. Trans. 53, 671 (2012).CrossRefGoogle Scholar
Kulkarni, A., Goland, A., Herman, H., Allen, A., Ilavsky, J., Long, G., Johnson, C., Ruud, J., J. Am. Ceram. Soc. 87 (7), 1294 (2004).CrossRefGoogle Scholar
Karthikeyan, J., Berndt, C.C., Tikkanen, J., Reddy, S., Herman, H., Mater. Sci. Eng., A 238 (2), 275 (1997).CrossRefGoogle Scholar
Bhatia, T., Ozturk, A., Xie, L., Jordan, E., Cetegen, B., Gell, M., Ma, X., Padture, N., J. Mater. Res. 17, 2363 (2002).CrossRefGoogle Scholar
Rampon, R., Filiatre, C., Bertrand, G., J. Therm. Spray Technol. 17 (1), 105 (2008).CrossRefGoogle Scholar
Delbos, C., Fazilleau, J., Rat, V., Coudert, J.F., Fauchais, P., Pateyron, B., Plasma Chem. Plasma Process. 26 (4), 393 (2006).CrossRefGoogle Scholar
Kassner, H., Siegert, R., Hathiramani, D., Vassen, R., Stoever, D., J. Therm. Spray Technol. 17 (1), 115 (2008).CrossRefGoogle Scholar
Kaßner, H., Stuke, A., Rödig, M., Vaßen, R., Stöver, D., Ceramic Engineering and Science Proceedings 29 (4) 147 (2009).CrossRefGoogle Scholar
Guignard, A., Mauer, G., Vaßen, R., Stöver, D., J. Therm. Spray Technol. 21, 416 (2012).CrossRefGoogle Scholar
Guignard, A., doctoral thesis, Ruhr University, Bochum, Germany (2012).Google Scholar
Hospach, A., Mauer, G., Vassen, R., Stover, D., J. Therm. Spray Technol. 20 (1–2), 116 (2011).CrossRefGoogle Scholar
Zhu, D., Miller, R., Int. J. Appl. Ceram. Technol. 1, 86 (2004).CrossRefGoogle Scholar
Vassen, R., Cao, X., Tietz, F., Basu, D., Stöver, D., J. Am. Ceram. Soc. 83 (8), 2023 (2000).CrossRefGoogle Scholar
Jarligo, M., Mack, D.E., Vassen, R., Stöver, D., J. Therm. Spray Technol. 18 (2), 187 (2009).CrossRefGoogle Scholar
Tan, Y., Longtin, J., Sampath, S., Wang, H., J. Am. Ceram. Soc. 92 (3), 710 (2009).CrossRefGoogle Scholar
Miller, R.A., Smialek, J.L., Garilick, R.G., in Science and Technology of Zirconia I, Heuer, A.H., Hobbs, L.W., Eds. (American Ceramic Society, Columbus, OH, 1981), p. 241.Google Scholar
Mercer, C., Williams, J.R., Clarke, D.R., Evans, A.G., Proc. R. Soc. 463 (2081), 1393 (2007).CrossRefGoogle Scholar