Hostname: page-component-599cfd5f84-8nxqw Total loading time: 0 Render date: 2025-01-07T05:56:03.439Z Has data issue: false hasContentIssue false

Sustainable products from bio-oils

Published online by Cambridge University Press:  10 May 2017

Bernal Sibaja Hernández
Affiliation:
Department of Chemical Engineering, Auburn University, USA; bzs0035@tigermail.auburn.edu
Mehul Barde
Affiliation:
Department of Chemical Engineering, Auburn University, USA; mrb0063@auburn.edu
Brian Via
Affiliation:
Forest Products Development Center, Auburn University, USA; bkv0003@auburn.edu
Maria L. Auad
Affiliation:
Department of Chemical Engineering, Auburn University, USA; auad@auburn.edu
Get access

Abstract

The continued use of finite fossil fuel resources has shifted thinking toward a potential future bioeconomy, and the field of polymer science will play a critical role in valorization of bio-derived materials. Interest in renewable resources is constantly increasing, backed up by new environmental regulations and economic considerations. Biomass is abundant and diverse, and polymeric materials based on renewable feedstocks represent a viable alternative to fossil resources. Bio-oil—a dark brown, free-flowing organic liquid mixture—is a product of fast pyrolysis or liquefaction of biomass. Bio-oil generally comprises a large amount of water and hundreds of organic chemical compounds that can be further broken down into families of reactive structures, capable of producing new synthetic pathways to design and synthesize high-performance biopolymers and bioresins using lignocellulosic biomass. These new polymeric materials have demonstrated a unique combination of thermal resistance and low cost intrinsic of the biomass utilized, as well as superior mechanical performance of polymeric resins sufficient to compete with high-performance structural resins and coating materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

US Department of Energy, US Department of Agriculture, “Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply” (April 2005), https://www1.eere.energy.gov/bioenergy/pdfs/final_billionton_vision_report2.pdf.Google Scholar
Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T., Chem. Rev. 115, 11559 (2015).CrossRefGoogle Scholar
Scarlat, N., Dallemand, J.F., Monforti-Ferrario, F., Nita, V., Environ. Dev. 15, 3 (2015).CrossRefGoogle Scholar
The Freedonia Group, “Fiber-Reinforced Plastic Composites–Demand and Sales Forecasts, Market Share, Market Size, Market Leaders” (October 2013), http://www.freedoniagroup.com/Fiber-reinforced-Plastic-Composites.html.Google Scholar
Nova-Institut GmbH, “Market Study and Database on Bio-Based Polymers in the World: Capacities, Production and Applications: Status Quo and Trends towards 2020” (July 2013), https://biobs.jrc.ec.europa.eu/sites/default/files/generated/files/stakeholders/NOVA%20-Market-Study-on-Bio-based-Polymers.pdf.Google Scholar
Meyer, H.P., Org. Process Res. Dev. 15, 180 (2011).CrossRefGoogle Scholar
Corma, A., Iborra, S., Velty, A., Chem. Rev. 107, 2411 (2007).CrossRefGoogle Scholar
Mathers, R.T., J. Polym. Sci. A Polym. Chem. 50, 1 (2012).CrossRefGoogle Scholar
Huber, G.W., Sara, I., Corma, A., Chem Rev. 2, 4044 (2006).Google Scholar
Yao, K., Tang, C., Macromolecules 46, 1689 (2013).CrossRefGoogle Scholar
Travaini, R., Martin-Juarez, J., Lorenzo-Hernando, A., Bolado-Rodriguez, S., Bioresour. Technol. 199, 2 (2016).CrossRefGoogle Scholar
Garcia, R., Pizarro, C., Lavin, A.G., Bueno, J.L., Bioresour. Technol. 103, 249 (2012).CrossRefGoogle Scholar
Behera, S., Arora, R., Nandhagopal, N., Kumar, S., Renew. Sustain. Energy Rev. 36, 91 (2014).CrossRefGoogle Scholar
Narodoslawsky, M., Niederl-Schmidinger, A., Halasz, L., J. Cleaner Prod. 16, 164 (2008).CrossRefGoogle Scholar
Hamelinck, C.N., Faaij, A.P.C., Energy Policy 34, 3268 (2006).CrossRefGoogle Scholar
Thomas, J.E., Milne, A., Soltys, N., J. Anal. Appl. Pyrolysis 9, 207 (1986).Google Scholar
Patel, M., Zhang, X., Kumar, A., Renew. Sustain. Energy Rev. 53, 1486 (2016).CrossRefGoogle Scholar
Kan, T., Strezov, V., Evans, T.J., Renew. Sustain. Energy Rev. 57, 1126 (2016).CrossRefGoogle Scholar
Mohan, D., Pittman, C.U., Steele, P.H., Energy Fuels 20, 848 (2006).CrossRefGoogle Scholar
Balat, M., Kirtay, E., Balat, H., Energy Convers. Manage. 50, 3147 (2009).Google Scholar
Bridgwater, A.V., Czernik, S., Piskorz, J., “An Overview of Fast Pyrolysis,” in Progress in Thermochemical Biomass Conversion, Bridgwater, A.V., Ed. (Blackwell Science, London, UK, 2001), p. 977.CrossRefGoogle Scholar
Rezaei, P.S., Shafaghat, H., Daud, W.M.A.W., Appl. Catal. A 469, 490 (2014).Google Scholar
Lehto, J., Oasmaa, A., Solantausta, Y., Kytö, M., Chiaramonti, D., Appl. Energy 116, 178 (2014).CrossRefGoogle Scholar
Krutof, A., Hawboldt, K., Renew. Sustain. Energy Rev. 59, 406 (2016).CrossRefGoogle Scholar
No, S.Y., Renew. Sustainable Energy Rev. 40, 1108 (2014).CrossRefGoogle Scholar
Chattanathan, S.A., Adhikari, S., Abdoulmoumine, N., Renew. Sustain. Energy Rev. 16, 2366 (2012).Google Scholar
Shen, D., Jin, W., Hu, J., Xiao, R., Luo, K., Renew. Sustain. Energy Rev. 51, 761 (2015).CrossRefGoogle Scholar
Staš, M., Kubička, D., Chudoba, J., Pospíšil, M., Energy Fuels 28, 385 (2014).Google Scholar
Xiu, S., Shahbazi, A., Renew. Sustain. Energy Rev. 16, 4406 (2012).CrossRefGoogle Scholar
Kim, J.-S., Bioresour. Technol. 178, 90 (2015).CrossRefGoogle Scholar
Effendi, A., Gerhauser, H., Bridgwater, A.V., Renew. Sustain. Energy Rev. 12, 2092 (2008).CrossRefGoogle Scholar
Maity, S.K., Renew. Sustain. Energy Rev. 43, 1427 (2015).Google Scholar
Wei, N., Via, B.K., Wang, Y., McDonald, T., Auad, M.L., Ind. Crops Prod. 57, 116 (2014).CrossRefGoogle Scholar
Celikbag, Y., Robinson, T.J., Via, B.K., Adhikari, S., Auad, M.L., J. Appl. Polym. Sci. 132 (28), 9 (2015).Google Scholar
Sibaja, B., Adhikari, S., Celikbag, Y., Via, B., Auad, M.L., “Renewable Resources as Precursors of Polymeric Bio-Based Resins,” Proc. Conf. ACS (San Diego, CA, March 13–17, 2016).Google Scholar
Barde, M., Sibaja, B., Auad, M.L., “Pyrolysis Bio-Oil as Precursor of Polymeric Bio-Based Resins,” Proc. Conf. Frontiers in Biorefining: Chemicals and Products from Renewable Carbon (San Simon Island, GA, November 8–11, 2016).Google Scholar
Kunaver, M., Jasiukaityte, E., Cuk, N., Guthrie, J.T., J. Appl. Polym. Sci. 115, 1265 (2010).CrossRefGoogle Scholar
Liu, Y., Gao, J., Guo, H., Pan, Y., Zhou, C., Cheng, Q., Via, B.K., BioResources 10, 638 (2015).Google Scholar
Mao, A., Shi, S.Q., Steele, P., For. Prod. J. 61, 240 (2011).Google Scholar
Özbay, G., Ayrilmis, N., Ind. Crops Prod. 66, 68 (2015).Google Scholar
Zou, X.W., Qin, T.F., Wang, Y., Huang, L.H., Han, Y.M., Li, Y., Bioresour. Technol. 114, 654 (2012).CrossRefGoogle Scholar