Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T05:09:32.487Z Has data issue: false hasContentIssue false

The Underlying Chemistry of Self-Healing Materials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Over the past ten years, a broad range of self-healing materials, systems that can detect when they have been damaged and heal themselves either spontaneously or with the aid of a stimulus, has emerged. Although many unique compositions and components are used to create these materials, they all employ basic chemical reactions to facilitate repair processes. Kinetically controlled ring-opening reactions and reversible metal–ligand interactions have proven useful in autonomic self-healing materials, which require no stimulus (other than the formation of damage) for operation. In contrast, nonautonomic self-healing materials, which require some type of externally applied stimulus (such as heat or light) to enable healing functions, have capitalized on chemistries that utilize either reversible covalent bonds or various types of noncovalent interactions. This review describes the underlying chemistries used in state-of-the-art self-healing materials, as well as those currently in development.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Martin, P., Science 276 75 (1997).CrossRefGoogle Scholar
2.Bergman, S.D., Wudl, F., J. Mater. Chem. 18, 41 (2008).CrossRefGoogle Scholar
3.White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S., Nature 409, 794 (2001).CrossRefGoogle Scholar
4.Chauvin, Y., Angew. Chem. Int. Ed. 45, 3741 (2006).CrossRefGoogle Scholar
5.Schrock, R.R., Angew. Chem. Int. Ed. 45, 3748 (2006).CrossRefGoogle Scholar
6.Grubbs, R.H., Angew. Chem. Int. Ed. 45, 3760 (2006).CrossRefGoogle Scholar
7.Bielawski, C.W., Grubbs, R.H., Prog. Polym. Sci. 32, 1 (2007).CrossRefGoogle Scholar
8.Keller, M.W., White, S.R., Sottos, N.R., Adv. Funct. Mater. 17, 2399 (2007).CrossRefGoogle Scholar
9.Cho, S.H., Andersson, H.M., White, S.R., Sottos, N.R., Braun, P. V., Adv. Mater. 18, 997 (2006).CrossRefGoogle Scholar
10.Caruso, M.M., Delafuente, D.A., Ho, V., Sottos, N.R., Moore, J.S., White, S.R., Macromolecules 40, 8830 (2007).CrossRefGoogle Scholar
11.Toohey, K.S., Sottos, N.R., Lewis, J.A., Moore, J.S., White, S.R., Nat. Mater. 6, 581 (2007).CrossRefGoogle Scholar
12.Pang, J.W.C., Bond, I.P., Composites A 36, 183 (2005).CrossRefGoogle Scholar
13.Pang, J.W.C., Bond, I.P., Compos. Sci. Technol. 65, 1791 (2005).CrossRefGoogle Scholar
14.Trask, R.S., Bond, I.P., Smart Mater. Struct. 15, 704 (2006).CrossRefGoogle Scholar
15.Kersey, F.R., Loveless, D.M., Craig, S.L., J. R. Soc. Interface 4, 373 (2007).CrossRefGoogle Scholar
16.Cordier, P., Tournilhac, F., Soulié-Ziakovic, C., Leibler, L., Nature 451, 977 (2008).CrossRefGoogle Scholar
17.Lehn, J.-M., Prog. Polym. Sci. 30, 814 (2005).CrossRefGoogle Scholar
18.Sijbesma, R.P., Beijer, F.H., Brunsveld, L., Folmer, B.J.B., Hirschberg, J.H.K.K., Lange, R.F.M., Lowe, J.K.L., Meijer, E.W., Science 278, 1601 (1997).CrossRefGoogle Scholar
19.Chen, X., Dam, M.A., Ono, K., Mal, A., Shen, H., Nutt, S.R., Sheran, K., Wudl, F., Science 295, 1698 (2002).CrossRefGoogle Scholar
20.Chen, X., Wudl, F., Mal, A.K., Shen, H., Nutt, S.R., Macromolecules 36, 1802 (2003).CrossRefGoogle Scholar
21.Kamplain, J.W., Bielawski, C.W., Chem. Commun. 1727 (2006).CrossRefGoogle Scholar
22.Niu, W., O'Sullivan, C., Rambo, B.M., Smith, M.D., Lavigne, J.J., Chem. Commun. 4342 (2005).CrossRefGoogle Scholar
23.Hayes, S.A., Jones, F.R., Marshiya, K., Zhang, W., Composites A. 38, 1116 (2007).CrossRefGoogle Scholar
24.Chung, C.-M., Roh, Y.-S., Cho, S.-Y., Kim, J.-G., Chem. Mater. 16, 3982 (2004).CrossRefGoogle Scholar
25.Scott, T.F., Schneider, A.D., Cook, W.D., Bowman, C.N., Science 308, 1615 (2005).CrossRefGoogle Scholar
26.Huyck, R.H., Trenor, S.R., Love, B.J., Long, T.E., J. Macromol. Sci. A 40, 9 (2008).Google Scholar
27.Williams, K.A., Boydston, A.J., Bielawski, C.W., Chem. Soc. Rev. 36, 729 (2007).CrossRefGoogle Scholar
28.Paulusse, J.M.J., Huijbers, J.P.J., Sijbesma, R.P., Chem. Eur. J. 12, 4928 (2006).CrossRefGoogle Scholar
29.Chow, C.-F., Fujii, S., Lehn, J.-M., Angew. Chem., Int. Ed. 46, 5007 (2007).CrossRefGoogle Scholar
30.Beck, J.B., Rowan, S.J., J. Am. Chem. Soc. 125, 13922 (2003).CrossRefGoogle Scholar
31.Zhao, Y., Beck, J.B., Rowan, S.J., Jamieson, A.M., Macromolecules 37, 3529 (2004).CrossRefGoogle Scholar
32.Boydston, A.J., Williams, K.A., Bielawski, C.W., J. Am. Chem. Soc. 127, 12496 (2005).CrossRefGoogle Scholar
33.Shirakawa, H., Angew. Chem., Int. Ed. 40, 2574 (2000).3.0.CO;2-N>CrossRefGoogle Scholar
34.Williams, K.A., Boydston, A.J., Bielawski, C.W., J. R. Soc. Interface 4, 359 (2007).CrossRefGoogle Scholar
35.Varley, R., in Self-Healing Materials. An Alternative Approach to 20 Centuries of Materials Science, van der Zwaag, S., Ed. (Springer, Dordrecht, The Netherlands, 2007), p. 95.Google Scholar
36.Eisenberg, A., Kim, J.-S., Introduction to Ionomers (Wiley, New York, 1998).Google Scholar
37.Tadano, K., Hirosawa, E., Yamamoto, H., Yano, S., Macromolecules 22, 226 (1989).CrossRefGoogle Scholar
38.Kalista, S.J., Ward, T.C., Oyetunji, Z., Mech. Adv. Mater. Struct. 14, 391 (2007).CrossRefGoogle Scholar