Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T04:04:06.506Z Has data issue: false hasContentIssue false

Density Functional Theory in Surface Science and Heterogeneous Catalysis

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Solid surfaces are used extensively as catalysts throughout the chemical industry, in the energy sector, and in environmental protection. Recently, density functional theory has started providing new insight into the atomic-scale mechanisms of heterogeneous catalysis, helping to interpret the large amount of experimental data gathered during the last decades. This article shows how density functional theory can be used to describe the state of the surface during reactions and the rate of catalytic reactions. It will also show how we are beginning to understand the variation in catalytic activity from one transition metal to the next. Finally, the prospects of using calculations to guide the development of new catalysts in industry will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Maxwell, I.Stud. Surf. Sci. Catal. 101 (1996) p.1.CrossRefGoogle Scholar
2Haber, F. Nobel Prize Lecture (1919); C. Bosch, Nobel Prize Lecture (1932).Google Scholar
3Cong, P.Doolen, R.D.Fan, Q.Gi-aquinta, D.M., Guan, S.McFarland, E.W.Poojary, D.M.Self, K.Turner, H.W. and Weinberg, W.H.Angew. Chem. Int. Ed. 38 (1999) p.484.3.0.CO;2-#>CrossRefGoogle Scholar
4Li, W.-X.Stampfl, C. and Scheffler, M.Phys. Rev. Lett. 90 256102 (2003).CrossRefGoogle Scholar
5Li, W.-X.Stampfl, C. and Scheffler, M.Phys. Rev. B 67 045408 (2003).CrossRefGoogle Scholar
6Stampfl, C.Ganduglia-Pirovano, M.V., Reuter, K., and Scheffler, M.Surf. Sci. 500 (2002) p.368.CrossRefGoogle Scholar
7Reuter, K.Stampfl, C. and Scheffler, M.Handbook of Materials Modeling, Vol.31, edited by Yip, S. (Springer, Berlin, 2005) p.149.CrossRefGoogle Scholar
8Weinert, C.M. and Scheffler, M. in Defects in Semiconductors, edited by von Bardeleben, H.J., Mat. Sci. Forum 10–12 (1986) p.25.CrossRefGoogle Scholar
9Scheffler, M. and Dabrowski, J.Phil. Mag. A 58 (1988) p.107.Google Scholar
10Wang, X.-G.Weiss, W.Shaikhutdinov, Sh.K.Ritter, M.Petersen, M.Wagner, F.Schlögl, R., and Scheffler, M.Phys. Rev. Lett. 81 (1998) p.1038.CrossRefGoogle Scholar
11Reuter, K. and Scheffler, M.Phys. Rev. Lett. 90 046103 (2003).CrossRefGoogle Scholar
12Reuter, K. and Scheffler, M.Phys. Rev. B 68 045407 (2003).CrossRefGoogle Scholar
13Reuter, K. and Scheffler, M.Appl. Phys. A 78 (2004) p.793.Google Scholar
14Michaelides, A.Bocquet, M.-L.Sautet, P.Alavi, A. and King, D.A.Chem. Phys. Lett. 367 (2003) p.344.CrossRefGoogle Scholar
15Michaelides, A.Reuter, K. and Scheffler, M.J.Vac. Sci. Technol. A 23 (2005) p.1487.CrossRefGoogle Scholar
16Ketteler, G.Ogletree, D.F.Bluhm, H.Liu, H.Hebenstreit, E.L.D. and Salmeron, M.J. Am. Chem. Soc. 127 (2005) p.18269.CrossRefGoogle Scholar
17Reuter, K.Frenkel, D. and Scheffler, M.Phys. Rev. Lett. 93 116105 (2004); Phys. Rev. B 73 045433 (2006).CrossRefGoogle Scholar
18Peden, C.H.F.Goodman, D.W.Blair, D.S.Berlowitz, P.J.Fisher, G.B. and Oh, S.H.J. Phys. Chem. 92 (1988) p.1563.CrossRefGoogle Scholar
19Honkala, K., Hellman, A.Remediakis, I.N.Logadottir, A.Carlsson, A.Dahl, S.Christensen, C.H. and Nørskov, J.K., Science 307 (2005) p.555.CrossRefGoogle Scholar
20Nørskov, J.K., Bligaard, T.Logadottir, A.Bahn, S.Hansen, L.B.Bollinger, M.Bengaard, H.Hammer, B.Sljivancanin, Z.Mavrikakis, M.Xu, Y.Dahl, S. and Jacobsen, C.J.H.J. Catal. 209 (2002) p.275.CrossRefGoogle Scholar
21Michaelides, A.Liu, Z.-P.Zhang, C.P.Alavi, A.King, D.A. and Hu, P.J.Am. Chem. Soc. 125 (2003) p.3704.Google Scholar
22Sabatier, P.La catalyse en chimie organique (Bérange, Paris, 1920).Google Scholar
23Nilsson, A.Pettersson, L.G.M.Hammer, B.Bligaard, T.Christensen, C.H. and Nørskov, J.K., Catal. Lett. 100 (2005) p.111.CrossRefGoogle Scholar
24Hammer, B. and Nørskov, J.K., Nature 376 (1995) p.238.CrossRefGoogle Scholar
25Mavrikakis, M.Hammer, B. and Nørskov, J.K., Phys. Rev. Lett. 81 (1998) p.2819.CrossRefGoogle Scholar
26Pallassana, V. and Neurock, M.J. Catal. 191 (2000) p.301.CrossRefGoogle Scholar
27Lovvik, O.M.Olsen, R.A.J.Chem. Phys. 118 (2003) p.3268.CrossRefGoogle Scholar
28Roudgar, A. and Gross, A.Phys. Rev. B 67 033409 (2003).CrossRefGoogle Scholar
29Gajdos, M.Eichler, A. and Hafner, J., J.Phys.: Cond. Matt. 16 (2004) p.1141.Google Scholar
30See Axens IFP Group Technologies Web site, www.axens.fr, and Haldor Topsoe Web site, www.topsoe.com (accessed August 2006).Google Scholar
31Topsoe, H.Clausen, B.S.Candia, R.Wivel, C. and Morup, S.J.Catal. 68 (1981) p.433.CrossRefGoogle Scholar
32Kasztelan, S.Toulhoat, H.Grimblot, J. and Bonnelle, J.P.Appl. Catal. 13 (1984) p.127.CrossRefGoogle Scholar
33Byskov, L.Nørskov, J.K., Clausen, B.S. and Topsøe, H., J.Catal. 187 (1999) p.109.CrossRefGoogle Scholar
34Raybaud, P.Hafner, J., Kresse, G.Kasztelan, S. and Toulhoat, H.J.Catal. 190 (2000) p.128.CrossRefGoogle Scholar
35Helveg, S.Lauritsen, J.V.Lægsgaard, E., Stensgaard, I.Clausen, B.S.Topsøe, H., and Besenbacher, F.Phys. Rev. Lett. 84 (2000) p. 951.CrossRefGoogle Scholar
36Lauritsen, J.V.Helveg, S.Laegsgaard, E.Stensgaard, I.Clausen, B.S.Topsøe, H., and Besenbacher, F.J.Catal. 197 (2001) p.1.CrossRefGoogle Scholar
37Schweiger, H.Raybaud, P.Kresse, G. and Toulhoat, H.J.Catal. 207 (2002) p.76.CrossRefGoogle Scholar
38Bollinger, M.V.Jacobsen, K.W. and Nørskov, J.K., Phys. Rev. B 67 085410 (2003).CrossRefGoogle Scholar
39Schweiger, H.Raybaud, P. and Toulhoat, H.J.Catal. 212 (2002) p.33.CrossRefGoogle Scholar
40Bollinger, M.V.Lauritsen, J.V.Jacobsen, K.W.Nørskov, J.K., Helveg, S. and Besen-bacher, F., Phys. Rev. Lett. 87 196803 (2001).CrossRefGoogle Scholar
41Lauritsen, J.V.Nyberg, M.Vang, R.T.Bollinger, M.V.Clausen, B.S.Topsøe, H., Jacobsen, K.W.Nørskov, J.K., and Besenbacher, F.Nanotechnology 14 (2003) p.385.CrossRefGoogle Scholar
42Euzen, P.Raybaud, P.Krokidis, X.Toulhoat, H.Loarer, J.L. Le, Jolivet, J.P. and Froidefond, C. in Handbook of Porous Materials, Ch. 4, 7, and 9, edited by Schüth, F., Sing, K. and Weitkamp, J. (Wiley VCH, Weinheim, 2002) p.1591.Google Scholar
43Krokidis, X.Raybaud, P.Gobichon, A.E.Rebours, B.Euzen, P. and Toulhoat, H.J. Phys. Chem. B 105 (2001) p.5121.CrossRefGoogle Scholar
44Digne, M.Sautet, P.Raybaud, P.Euzen, P. and Toulhoat, H.J.Catal. 226 (2004) p.54.CrossRefGoogle Scholar
45Digne, M.Sautet, P.Raybaud, P.Euzen, P. and Toulhoat, H.J.Catal. 211 (2002) p.1.CrossRefGoogle Scholar
46Arrouvel, C.Breysse, M.Toulhoat, H. and Raybaud, P.J.Catal. 226 (2004) p.260.CrossRefGoogle Scholar
47Arrouvel, C.Breysse, M.Toulhoat, H. and Raybaud, P.J.Catal. 232 (2005) p.161.CrossRefGoogle Scholar
48Costa, D.Toulhoat, H. and Raybaud, P. unpublished.Google Scholar
49Pecoraro, T.A. and Chianelli, R.R.J.Catal. 67 (1981) p.430.CrossRefGoogle Scholar
50Toulhoat, H.Raybaud, P.Kasztelan, S.Kresse, G. and Hafner, J., Catal. Today 50 (1999) p.629.CrossRefGoogle Scholar
51Toulhoat, H. and Raybaud, P.J. Catal. 216 (2003) p.63.CrossRefGoogle Scholar
52Materials Design Web site, www. materialsdesign.com (accessed August 2006).Google Scholar
53Thiollier, A.Afanasiev, P.Delichere, P. and Vrinat, M.J.Catal. 197 (2001) p.58.CrossRefGoogle Scholar