Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T07:26:37.690Z Has data issue: false hasContentIssue false

Design of super-conformable, foldable materials via fractal cuts and lattice kirigami

Published online by Cambridge University Press:  11 February 2016

Shu Yang
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, USA; shuyang@seas.upenn.edu
In-Suk Choi
Affiliation:
High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, South Korea; insukchoi@kist.re.kr
Randall D. Kamien
Affiliation:
Department of Physics and Astronomy, University of Pennsylvania, USA; kamien@physics.upenn.edu
Get access

Abstract

Materials that can expand and collapse, fold, and transform into a variety of shapes have attracted significant interest and have applications in the design of flexible electronics, color displays, smart windows, actuators, sensors, and both photonic and phononic devices. But how can we render a rigid device super-flexible so that it can wrap around a sphere without bending and stretching? How can flat surfaces be transformed into any desired three-dimensional (3D) structure without disruptive or catastrophic deformation? The key lies in cuts. Here, we review recent research progress in the design of super-conformable and foldable materials by employing fractal cutting and lattice-based kirigami elements that combine cutting and folding. By prescribing cuts with different motifs, identifying edges in the right geometry, and by programming the folding directions, we show that a single flat sheet can be transformed into a variety of targeted 2D and 3D structures—a pluripotent platform for new technologies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Herminghaus, S., Jacobs, K., Mecke, K., Bischof, J., Fery, A., Ibn-Elhaj, M., Schlagowski, S., Science 282, 916 (1998).CrossRefGoogle Scholar
Tanaka, T., Sun, S.T., Hirokawa, Y., Katayama, S., Kucera, J., Hirose, Y., Amiya, T., Nature 325, 796 (1987).CrossRefGoogle Scholar
Lobkovsky, A., Gentges, S., Li, H., Morse, D., Witten, T.A., Science 270, 1482 (1995).CrossRefGoogle Scholar
Trujillo, V., Kim, J., Hayward, R.C., Soft Matter 4, 564 (2008).CrossRefGoogle Scholar
Cerda, E., Ravi-Chandar, K., Mahadevan, L., Nature 419, 579 (2002).CrossRefGoogle Scholar
Roman, B., Pocheau, A., Europhys. Lett. 46, 602 (1999).CrossRefGoogle Scholar
Zhang, Y., Lo, C.W., Taylor, J.A., Yang, S., Langmuir 22, 8595 (2006).CrossRefGoogle Scholar
Chandra, D., Yang, S., Acc. Chem. Res. 43, 1080 (2010).CrossRefGoogle Scholar
Mullin, T., Deschanel, S., Bertoldi, K., Boyce, M.C., Phys. Rev. Lett. 99, 084301 (2007).CrossRefGoogle Scholar
Zhang, Y., Matsumoto, E.A., Peter, A., Lin, P.-C., Kamien, R.D., Yang, S., Nano Lett. 8, 1192 (2008).CrossRefGoogle Scholar
Singamaneni, S., Bertoldi, K., Chang, S., Jang, J.-H., Thomas, E.L., Boyce, M.C., Tsukruk, V.V., ACS Appl. Mater. Interfaces 1, 42 (2008).CrossRefGoogle Scholar
Matsumoto, E.A., Kamien, R.D., Soft Matter 8, 11038 (2012).CrossRefGoogle Scholar
Overvelde, J.T.B., Shan, S., Bertoldi, K., Adv. Mater. 24, 2337 (2012).CrossRefGoogle Scholar
Li, J., Shim, J., Deng, J., Overvelde, J.T.B., Zhu, X., Bertoldi, K., Yang, S., Soft Matter 8, 10322 (2012).CrossRefGoogle Scholar
Zhu, X., Wu, G., Dong, R., Chen, C.-M., Yang, S., Soft Matter 8, 8088 (2012).CrossRefGoogle Scholar
Kang, S.H., Shan, S., Kosmrlj, A., Noorduin, W.L., Shian, S., Weaver, J.C., Clarke, D.R., Bertoldi, K., Phys. Rev. Lett. 112, 098701 (2014).CrossRefGoogle Scholar
Florijn, B., Coulais, C., van Hecke, M., Phys. Rev. Lett. 113, 175503 (2014).CrossRefGoogle Scholar
Wu, G., Xia, Y., Yang, S., Soft Matter 10, 1392 (2014).CrossRefGoogle Scholar
Wu, G., Cho, Y., Choi, I.-S., Ge, D., Li, J., Han, H.N., Lubensky, T., Yang, S., Adv. Mater. 27, 2747 (2015).CrossRefGoogle Scholar
Jang, J.-H., Koh, C.Y., Bertoldi, K., Boyce, M.C., Thomas, E.L., Nano Lett. 9, 2113 (2009).CrossRefGoogle Scholar
Shan, S.C., Kang, S.H., Wang, P., Qu, C.Y., Shian, S., Chen, E.R., Bertoldi, K., Adv. Funct. Mater. 24, 4935 (2014).CrossRefGoogle Scholar
Bertoldi, K., Reis, P.M., Willshaw, S., Mullin, T., Adv. Mater. 22, 361 (2010).CrossRefGoogle Scholar
Gatt, R., Caruana-Gauci, R., Attard, D., Casha, A.R., Wolak, W., Dudek, K., Mizzi, L., Grima, J.N., Phys. Status Solidi B 251, 321 (2014).CrossRefGoogle Scholar
Sekitani, T., Someya, T., MRS Bull. 37 (3), 236 (2012).CrossRefGoogle Scholar
Suo, Z., MRS Bull. 37 (3), 218 (2012).CrossRefGoogle Scholar
Kim, D.H., Lu, N.S., Ma, R., Kim, Y.S., Kim, R.H., Wang, S.D., Wu, J., Won, S.M., Tao, H., Islam, A., Yu, K.J., Kim, T.I., Chowdhury, R., Ying, M., Xu, L.Z., Li, M., Chung, H.J., Keum, H., McCormick, M., Liu, P., Zhang, Y.W., Omenetto, F.G., Huang, Y.G., Coleman, T., Rogers, J.A., Science 333, 838 (2011).CrossRefGoogle Scholar
Xu, S., Zhang, Y.H., Cho, J., Lee, J., Huang, X., Jia, L., Fan, J.A., Su, Y.W., Su, J., Zhang, H.G., Cheng, H.Y., Lu, B.W., Yu, C.J., Chuang, C., Kim, T.I., Song, T., Shigeta, K., Kang, S., Dagdeviren, C., Petrov, I., Braun, P.V., Huang, Y.G., Paik, U., Rogers, J.A., Nat. Commun. 4, 8 (2013).Google Scholar
Weng, Z., Su, Y., Wang, D.-W., Li, F., Du, J., Cheng, H.-M., Adv. Energy Mater. 1, 917 (2011).CrossRefGoogle Scholar
Zheng, G.Y., Hu, L.B., Wu, H., Xie, X., Cui, Y., Energy Environ. Sci. 4, 3368 (2011).CrossRefGoogle Scholar
Jost, K., Perez, C.R., McDonough, J.K., Presser, V., Heon, M., Dion, G., Gogotsi, Y., Energy Environ. Sci. 4, 5060 (2011).CrossRefGoogle Scholar
Ge, D., Yang, L., Fan, L., Zhang, C., Xiao, X., Gogotsi, Y., Yang, S., Nano Energy 11, 568 (2015).CrossRefGoogle Scholar
Song, Y.M., Xie, Y.Z., Malyarchuk, V., Xiao, J.L., Jung, I., Choi, K.J., Liu, Z.J., Park, H., Lu, C.F., Kim, R.H., Li, R., Crozier, K.B., Huang, Y.G., Rogers, J.A., Nature 497, 95 (2013).CrossRefGoogle Scholar
Xu, H.X., Yu, C.J., Wang, S.D., Malyarchuk, V., Xie, T., Rogers, J.A., Adv. Funct. Mater. 23, 3299 (2013).CrossRefGoogle Scholar
Baughman, R.H., Synth. Met. 78, 339 (1996).CrossRefGoogle Scholar
Jager, E.W.H., Smela, E., Inganas, O., Science 290, 1540 (2000).CrossRefGoogle Scholar
Keplinger, C., Sun, J.-Y., Foo, C.C., Rothemund, P., Whitesides, G.M., Suo, Z., Science 341, 984 (2013).CrossRefGoogle Scholar
Lee, E., Zhang, M., Cho, Y., Cui, Y., Van der Spiegel, J., Engheta, N., Yang, S., Adv. Mater. 26, 4127 (2014).CrossRefGoogle Scholar
Ge, D., Lee, E., Yang, L., Cho, Y., Li, M., Gianola, D.S., Yang, S., Adv. Mater. 27, 2489 (2015).CrossRefGoogle Scholar
Webb, R.C., Bonifas, A.P., Behnaz, A., Zhang, Y.H., Yu, K.J., Cheng, H.Y., Shi, M.X., Bian, Z.G., Liu, Z.J., Kim, Y.S., Yeo, W.H., Park, J.S., Song, J.Z., Li, Y.H., Huang, Y.G., Gorbach, A.M., Rogers, J.A., Nat. Mater. 12, 938 (2013).CrossRefGoogle Scholar
Dagdeviren, C., Yang, B.D., Su, Y.W., Tran, P.L., Joe, P., Anderson, E., Xia, J., Doraiswamy, V., Dehdashti, B., Feng, X., Lu, B.W., Poston, R., Khalpey, Z., Ghaffari, R., Huang, Y.G., Slepian, M.J., Rogers, J.A., Proc. Natl. Acad. Sci. U.S.A. 111, 1927 (2014).CrossRefGoogle Scholar
Ge, D., Yang, L., Honglawan, A., Li, J., Yang, S., Chem. Mater. 26, 1678 (2014).CrossRefGoogle Scholar
Jost, K., Dion, G., Gogotsi, Y., J. Mater. Chem. A 2, 10776 (2014).CrossRefGoogle Scholar
Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., Chem. Soc. Rev. 40, 3941 (2011).CrossRefGoogle Scholar
Zhu, H., Fang, Z., Preston, C., Li, Y., Hu, L., Energy Environ. Sci. 7, 269 (2014).CrossRefGoogle Scholar
Yang, S., Khare, K., Lin, P.-C., Adv. Funct. Mater. 20, 2550 (2010).CrossRefGoogle Scholar
Khang, D.-Y., Jiang, H., Huang, Y., Rogers, J.A., Science 311, 208 (2006).CrossRefGoogle Scholar
Zhang, Y.H., Fu, H.R., Su, Y.W., Xu, S., Cheng, H.Y., Fan, J.A., Hwang, K.C., Rogers, J.A., Huang, Y.G., Acta Mater. 61, 7816 (2013).CrossRefGoogle Scholar
Song, Z., Ma, T., Tang, R., Cheng, Q., Wang, X., Krishnaraju, D., Panat, R., Chan, C.K., Yu, H., Jiang, H., Nat. Commun. 5, 3140 (2014).CrossRefGoogle Scholar
Gracias, D.H., Curr. Opin. Chem. Eng. 2, 112 (2013).CrossRefGoogle Scholar
Guo, X., Li, H., Yeop Ahn, B., Duoss, E.B., Hsia, K.J., Lewis, J.A., Nuzzo, R.G., Proc. Natl. Acad. Sci. U.S.A. 106, 20149 (2009).CrossRefGoogle Scholar
Hawkes, E., An, B., Benbernou, N.M., Tanaka, H., Kim, S., Demaine, E.D., Rus, D., Wood, R.J., Proc. Natl. Acad. Sci. U.S.A. 107, 12441 (2010).CrossRefGoogle Scholar
Felton, S., Tolley, M., Demaine, E., Rus, D., Wood, R., Science 345, 644 (2014).CrossRefGoogle Scholar
Klein, Y., Efrati, E., Sharon, E., Science 315, 1116 (2007).CrossRefGoogle Scholar
Kim, J., Hanna, J.A., Byun, M., Santangelo, C.D., Hayward, R.C., Science 335, 1201 (2012).CrossRefGoogle Scholar
Liu, Y., Boyles, J.K., Genzer, J., Dickey, M.D., Soft Matter 8, 1764 (2012).CrossRefGoogle Scholar
Na, J.-H., Evans, A.A., Bae, J., Chiappelli, M.C., Santangelo, C.D., Lang, R.J., Hull, T.C., Hayward, R.C., Adv. Mater. 27, 79 (2015).CrossRefGoogle Scholar
Wu, Z.L., Moshe, M., Greener, J., Therien-Aubin, H., Nie, Z., Sharon, E., Kumacheva, E., Nat. Commun. 4, 1586 (2013).CrossRefGoogle Scholar
Ware, T.H., McConney, M.E., Wie, J.J., Tondiglia, V.P., White, T.J., Science 347, 982 (2015).CrossRefGoogle Scholar
Ryu, J., D’Amato, M., Cui, X., Long, K.N., Qi, H.J., Dunn, M.L., Appl. Phys. Lett. 100, 161908 (2012).CrossRefGoogle Scholar
Qi, G., Conner, K.D., Qi, H.J., Martin, L.D., Smart Mater. Struct. 23, 094007 (2014).Google Scholar
Xu, S., Yan, Z., Jang, K.-I., Huang, W., Fu, H., Kim, J., Wei, Z., Flavin, M., McCracken, J., Wang, R., Badea, A., Liu, Y., Xiao, D., Zhou, G., Lee, J., Chung, H.U., Cheng, H., Ren, W., Banks, A., Li, X., Paik, U., Nuzzo, R.G., Huang, Y., Zhang, Y., Rogers, J.A., Science 347, 154 (2015).CrossRefGoogle ScholarPubMed
Borrelli, V., Jabrane, S., Lazarus, F., Thibert, B., Proc. Natl. Acad. Sci. U.S.A. 109, 7218 (2012).CrossRefGoogle Scholar
Abruzzo, E., Solomon, J.D., Decoration (Princeton Architectural Press, New York, NY, 2006).Google Scholar
Tang, Y., Lin, G., Han, L., Qiu, S., Yang, S., Yin, J., Adv. Mater. (forthcoming).Google Scholar
Cho, Y., Shin, J.H., Costa, A., Kim, T.A., Kunin, V., Li, J., Lee, S.Y., Yang, S., Han, H.N., Choi, I.S., Srolovitz, D.J., Proc. Natl. Acad. Sci. U.S.A. 111, 17390 (2014).CrossRefGoogle Scholar
Castle, T., Cho, Y., Gong, X., Jung, E., Sussman, D.M., Yang, S., Kamien, R.D., Phys. Rev. Lett. 113, 245502 (2014).CrossRefGoogle Scholar
Sussman, D.M., Cho, Y., Castle, T., Gong, X., Jung, E., Yang, S., Kamien, R.D., Proc. Natl. Acad. Sci. U.S.A. 112, 7449 (2015).CrossRefGoogle Scholar
Seung, H.S., Nelson, D.R., Phys. Rev. A At. Mol. Opt. Phys. 38, 1005 (1988).CrossRefGoogle Scholar
Witten, T.A., Rev. Mod. Phys. 79, 643 (2007).CrossRefGoogle Scholar
Kamien, R.D., Rev. Mod. Phys. 74, 953 (2002).CrossRefGoogle Scholar
Sadoc, J.F., Rivier, N., Charvolin, J., Acta Crystallogr. 68, 470 (2012).CrossRefGoogle Scholar
Shyu, T.C., Damasceno, P.F., Dodd, P.M., Lamoureux, A., Xu, L., Shlian, M., Shtein, M., Glotzer, S.C., Kotov, N.A., Nat. Mater. 14, 785 (2015).CrossRefGoogle Scholar