Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T01:52:50.854Z Has data issue: false hasContentIssue false

In Aqua Manufacturing of a Three-Dimensional Nanostructure Using a Peptide Aptamer

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

TBP-1 is a 12-amino-acid peptide aptamer that has been isolated as a Ti binder using a peptide-phage system. Subsequent analyses have shown that TBP1 also binds Si and Ag, and has the ability to enhance the formation of titania and silica as well as nanoparticles of Ag. TBP-1 is thus a bifunctional peptide: a binder that also acts as a mediator of mineralization. These two functions can be grafted onto heterologous molecules. For instance, mutational analysis of the TBP-1 revealed that its N -terminal hexapeptide, RKLPDA (minTBP-1), is sufficient for Ti binding. When the surface of ferritin, a nano-sized spherical cargo protein, was ornamented with minTBP-1 either genetically or chemically, the resultant modified ferritin acquired the ability to bind Ti and mediate mineralization. By alternately applying the binding and mineralization activities of the minTBP-1-modified nanocage, we were able to construct, in stepwise fashion, multilayer structures composed of titania (or silica) and nanocages. We named this process the biomimetic layer-by-layer (BioLBL) method. By coupling BioLBL with a conventional top-down lithographic method, in aqua structuralization of a three-dimensional (3D) configuration of nanomolecules was realized. As shown in this article, binding and mineralization activities of peptide aptamers, when they are combined with nanostructured materials, play active roles in manufacturing nanostrucutre in aqua.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scott, J.K., Smith, G.P., Science 249, 386 (1990).CrossRefGoogle Scholar
2.Brown, S., Proc. Natl. Acad. Sci. USA 89, 8651 (1992).CrossRefGoogle Scholar
3.Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F., Belcher, A.M., Nature 405, 665 (2000).CrossRefGoogle Scholar
4.Tamerler, C., Sarikaya, M., Acta. Biomater. 3, 289 (2007).CrossRefGoogle Scholar
5.Baneyx, F., Schwartz, D.T., Curr. Opin. Biotechnol. 18, 312 (2007).CrossRefGoogle Scholar
6.Sano, K., Shiba, K., J. Am. Chem. Soc. 125, 14234 (2003).CrossRefGoogle Scholar
7.Jones, F.H., Surf. Sci. Rep. 42, 75 (2001).CrossRefGoogle Scholar
8.Sano, K., Sasaki, H., Shiba, K., Langmuir 21, 3090 (2005).CrossRefGoogle Scholar
9.Hayashi, T., Sano, K., Shiba, K., Kumashiro, Y., Iwahori, K., Yamashita, I., Hara, M., Nano Lett. 6, 515 (2006).CrossRefGoogle Scholar
10.Barbas, C.F. III, Burton, D.R., Scott, J.K., Silverman, G.J., Phage Display: a Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 2001).Google Scholar
11.Banyard, S.H., Stammers, D.K., Harrison, P.M., Nature 271, 282 (1978).Google Scholar
12.Douglas, T., Young, M., Science 312, 873 (2006).Google Scholar
13.Iwahori, K., Yamashita, I., Recent Res. Devel. Bioeng. 7, 41 (2005).Google Scholar
14.Sano, K., Ajima, K., Iwahori, K., Yudasaka, M., Iijima, S., Yamashita, I., Shiba, K., Small 1, 826 (2005).Google Scholar
15.Takeda, S., Ohta, M., Ebina, S., Nagayama, K., Biochim. Biophys. Acta 1174, 218 (1993).Google Scholar
16.Yamashita, I., Kirimura, H., Okuda, M., Nishio, K., Sano, K., Shiba, K., Hayashi, T., Hara, M., Mishima, Y., Small 2, 1148 (2006).CrossRefGoogle Scholar
17.Yamashita, I., Proc. of SPIE 5650, 1 (2005).CrossRefGoogle Scholar
18.Yamada, K., Yoshii, S., Kumagai, S., Fujiwara, I., Nishio, K., Okuda, M., Matsukawa, N., Yamashita, I., Jpn. J. Appl. Phys. 45, 8946 (2006).Google Scholar
19.Miura, A., Hikono, T., Matsumura, T., Yano, H., Hatayama, T., Uraoka, Y., Fuyuki, T., Yoshii, S., Yamashita, I., Jpn. J. Appl. Phys. 45, L1 (2006).Google Scholar
20.Brown, S., Sarikaya, M., Johnson, E., J. Mol. Biol. 299, 725 (2000).Google Scholar
21.Lee, S.W., Mao, C., Flynn, C.E., Belcher, A.M., Science 296, 892 (2002).Google Scholar
22.Naik, R.R., Stringer, S.J., Agarwal, G., Jones, S.E., Stone, M.O., Nat. Mater. 1, 169 (2002).Google Scholar
23.Flynn, C.E., Mao, C., Hayhurst, A., Williams, J. L., Georgiou, G., Iverson, B., Belcher, A.M.., J. Mater. Chem. 13, 2414 (2003).CrossRefGoogle Scholar
24.Mao, C., Solis, D. J., Reiss, B. D., Kottmann, S. T., Sweeney, R.Y., Hayhurst, A., Georgiou, G., Iverson, B., Belcher, A.M., Science 303, 213 (2004).Google Scholar
25.Umetsu, M., Mizuta, M., Tsumoto, K., Ohara, S., Takami, S., Watanabe, H., Kumagai, I., Adschiri, T., Adv. Mater. 17, 2571 (2005).Google Scholar
26.Mann, S., Biomineralization-Principles and Concepts in Bioinorganic Materials Chemistry (Oxford University Press, Oxford, 2001).CrossRefGoogle Scholar
27.Sano, K., Sasaki, H., Shiba, K., J. Am. Chem. Soc. 128, 1717 (2006).CrossRefGoogle Scholar
28.Sano, K., Yoshii, S., Yamashita, I., Shiba, K., Nano Lett. 7, 3200 (2007).Google Scholar
29.Picart, C., Mutterer, J., Richert, L., Luo, Y., Prestwich, G.D., Schaaf, P., Voegel, J.C., Lavalle, P., Proc. Natl. Acad. Sci. U.S.A. 99, 12531 (2002).Google Scholar