Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T15:47:40.973Z Has data issue: false hasContentIssue false

Magnetic nanoparticles for magnetically guided therapies against neural diseases

Published online by Cambridge University Press:  13 November 2014

G.F. Goya
Affiliation:
Institute of Nanoscience of Aragón, Universidad de Zaragoza, Spain; goya@unizar.es
M.P. Calatayud
Affiliation:
Institute of Nanoscience of Aragón, Universidad de Zaragoza, Spain; pilarcs@unizar.es
B. Sanz
Affiliation:
Institute of Nanoscience of Aragón, Universidad de Zaragoza, Spain; beasanz@unizar.es
M. Giannaccini
Affiliation:
Scuola Superiore Sant’Anna, Italy; m.giannaccini@sssup.it
V. Raffa
Affiliation:
Dipartimento di Biologia, Università di Pisa, Italy; vittoria.raffa@unipi.it
T.E. Torres
Affiliation:
Institute of Nanoscience of Aragón and Laboratory of Advanced Microscopies, University of Zaragoza; teo@unizar.es
M.R. Ibarra
Affiliation:
Institute of Nanoscience of Aragón and Laboratory of Advanced Microscopies, University of Zaragoza; Ibarra@unizar.es
Get access

Abstract

Neurological pathologies and nerve damage are two problems of significant medical and economic impact because of the hurdles of losing nerve functionality in addition to significant mortality and morbidity, and demanding rehabilitation. There are currently a number of examples of how nanotechnology can provide new solutions for biomedical problems. Current strategies for nerve repair rely on the use of functionalized scaffolds working as “nerve guidance channels” to improve axonal regeneration and to direct axonal re-growth across the nerve lesion site. Since low invasiveness and high selectivity of the growth stimulation are usually conflicting requirements, new approaches are being pursued in order to overcome such limitations. Engineered magnetic nanoparticles (MNPs) have emerged from this need for noninvasive therapies for both positioning and guiding neural cells in response to an external magnetic field. Here, we review the current state of the use of MNPs for neuroprotective and magnetically guided therapies. We discuss some conceivable outcomes of current magnetically driven strategies seeking integrated platforms for regenerative action on damaged tissues.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pinkernelle, J., Calatayud, P., Goya, G.F., Fansa, H., Keilhoff, G., BMC Neurosci. 13, 32 (2012).Google Scholar
Daly, W., Yao, L., Zeugolis, D., Windebank, A., Pandit, A., J. R. Soc. Interface 9, 202 (2012).CrossRefGoogle Scholar
Siemionow, M., Brzezicki, G., Int. Rev. Neurobiol. 87, 141 (2009).Google Scholar
Dickson, B.J., Science 298, 1959 (2002).Google Scholar
Wong, T.S., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A., Aizenberg, J., Nature 477, 443 (2011).CrossRefGoogle Scholar
Yan, Y., Such, G.K., Johnston, A.P.R., Best, J.P., Caruso, F., ACS Nano 6, 3663 (2012).Google Scholar
Riggio, C., Calatayud, M.P., Giannaccini, M., Sanz, B., Torres, T.E., Fernandez-Pacheco, R., Ripoli, A., Ibarra, M.R., Dente, L., Cuschieri, A., Goya, G.F., Raffa, V., Nanomedicine (2014) (forthcoming).Google Scholar
Borton, D.A., Yin, M., Aceros, J., Nurmikko, A., J. Neural Eng. 10, 026010 (2013).CrossRefGoogle Scholar
Kilinc, D., Blasiak, A., O’Mahony, James J., Suter, D.M., Lee, G.U., Biophys. J. 103, 1120 (2012).Google Scholar
Liu, J., Shi, J., Jiang, L., Zhang, F., Wang, L., Yamamoto, S., Takano, M., Chang, M., Zhang, H., Chen, Y., Appl. Surf. Sci. 258, 7530 (2012).Google Scholar
Zablotskii, V., Syrovets, T., Schmidt, Z.W., Dejneka, A., Simmet, T., Biomaterials 35, 3164 (2014).Google Scholar
Yue, K., Guduru, R., Hong, J., Liang, P., Nair, M., Khizroev, S., PLoS One 7, e44040 (2012).Google Scholar
Alivisatos, A.P., Andrews, A.M., Boyden, E.S., Chun, M., Church, G.M., Deisseroth, K., Donoghue, J.P., Fraser, S.E., Lippincott-Schwartz, J., Looger, L.L., Masmanidis, S., McEuen, P.L., Nurmikko, A.V., Park, H., Peterka, D.S., Reid, C., Roukes, M.L., Scherer, A., Schnitzer, M., Sejnowski, T.J., Shepard, K.L., Tsao, D., Turrigiano, G., Weiss, P.S., Xu, C., Yuste, R., Zhuang, X., ACS Nano 7, 1850 (2013).Google Scholar
Lakshmi, P.K., Indira, T.K., Int. J. Pharm. Sci. Nanotechnol. 3, 8 (2010).Google Scholar
Marcos-Campos, I., Asín, L., Torres, T.E., Marquina, C., Tres, A., Ibarra, M.R., Goya, G.F., Nanotechnology 22, 13 (2011).Google Scholar
Tartaj, P., Morales, M., Veintemillas-Verdaguer, S., González-Carreño, T., Serna, C.J., J. Phys. D: Appl. Phys. 36, R182 (2003).Google Scholar
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V., Muller, R.N., Chem. Rev. 108, 2064 (2008).Google Scholar
Oh, J.K., Park, J.M., Prog. Polym. Sci. 36, 168 (2011).Google Scholar
Mizutani, N., Iwasaki, T., Watano, S., Yanagida, T., Kawai, T., Curr. Appl. Phys. 10, 801 (2010).CrossRefGoogle Scholar
Kievit, F.M., Veiseh, O., Bhattarai, N., Fang, C., Gunn, J.W., Lee, D., Ellenbogen, L.G., Olson, J.M., Zhang, M., Adv. Funct. Mater. 19, 2244 (2009).Google Scholar
Riggio, C., Pilar Calatayud, M., Hoskins, C., Pinkernelle, J., Sanz, B., Enrique Torres, T., Ricardo Ibarra, M., Wang, L., Keilhoff, G., Fabian Goya, G., Raffa, V., Cuschieri, A., Int. J. Nanomed. 7, 3155 (2012).Google Scholar
Calatayud, M.P., Riggio, C., Raffa, V., Sanz, B., Torres, T.E., Ibarra, M.R., Hoskins, C., Cuschieri, A., Wang, L., Pinkernelle, J., Keilhoff, G., Goya, G.F., J. Mater. Chem. B 1, 3607 (2013).CrossRefGoogle Scholar
Riggio, C., Nocentini, S., Catalayud, M.P., Goya, G.F., Cuschieri, A., Raffa, V., del Río, J.A., Int. J. Mol. Sci. 14, 10852 (2013).CrossRefGoogle Scholar
Sibov, T.T., Pavon, L.F., Miyaki, L.A., Mamani, J.B., Nucci, L.P., Alvarim, L.T., Silveira, P.H., Marti, L.C., Gamarra, L., Int. J. Nanomed. 9, 337 (2013).Google Scholar
Pilakka-Kanthikeel, S., Atluri, V.S.R., Sagar, V., Saxena, S.K., Nair, M., PLoS One 8, e62241 (2013).CrossRefGoogle Scholar
Tenzer, S., Docter, D., Kuharev, J., Musyanovych, A., Fetz, V., Hecht, R., Schlenk, F., Fischer, D., Kiouptsi, K., Reinhardt, C., Landfester, K., Schild, H., Maskos, M., Knauer, S.K., Stauber, R.H., Nat. Nanotechnol. 8 (10), 772 (2013).Google Scholar
Saptarshi, S.R., Duschl, A., Lopata, A.L., J. Nanobiotechnology 11, 26 (2013).CrossRefGoogle Scholar
Calatayud, M.P., Sanz, B., Raffa, V., Riggio, C., Ibarra, M.R., Goya, G.F., Biomaterials 35, 6389 (2014).CrossRefGoogle Scholar
Eberbeck, D., Kettering, M., Bergemann, C., Zirpel, P., Hilger, I., Trahms, L., J. Phys. D: Appl. Phys. 43 (40), 405002 (2010).CrossRefGoogle Scholar
Hilda, M.L.Wiogo, T.R., Bulmus, V., Gutiérrez, L., Woodward, R.C., Langmuir 28, 4346 (2012).Google Scholar
Welsch, N., Lu, Y., Dzubiella, J., Ballauf, M., Polymer 54, 2835e2849 (2013).Google Scholar
Bray, D., J. Cell Sci. 37, 391 (1979).Google Scholar
Bray, D., Dev. Biol. 102, 379 (1984).CrossRefGoogle Scholar
Smith, D.H., Prog. Neurobiol. 89, 231 (2009).Google Scholar
Fass, J.N., Odde, D.J., Biophys. J. 85, 623 (2003).Google Scholar