Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-20T12:24:33.370Z Has data issue: false hasContentIssue false

Materials science for quantum information science and technology

Published online by Cambridge University Press:  16 June 2020

Christopher J.K. Richardson
Affiliation:
Laboratory for Physical Sciences, and Department of Materials Science and Engineering, University of Maryland, USA; richardson@lps.umd.edu
Vincenzo Lordi
Affiliation:
Quantum Simulations Group, Lawrence Livermore National Laboratory, USA; lordi2@llnl.gov
Shashank Misra
Affiliation:
Sandia National Laboratories, USA; smisra@sandia.gov
Javad Shabani
Affiliation:
New York University, USA; jshabani@nyu.edu
Get access

Abstract

Quantum computing, sensing, and communications are emerging technologies that may circumvent known limitations of their existing traditional counterparts. While the promises of these technologies are currently narrow in scope, it is possible that they will broadly impact our lives by revolutionizing the capabilities of data centers and medical diagnostics, for example. At the heart of these technologies is the use of a quantum object to contain information, called a quantum bit or qubit. Current realizations of qubits exist in a broad variety of material systems, including individual spins in semiconductors or insulators, superconducting circuits, and trapped ions. Further advancement of qubits requires significant contributions from materials science in areas of materials selection, synthesis, fabrication, simulation and characterization. Here, we discuss some of the needs and opportunities for contributions to advance the fundamental understanding of materials used in quantum information applications.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article is based on the Materials Research Society/Kavli Future of Materials Workshop: Solid-State Materials for Quantum Computing, held in April 2019 in Phoenix, Ariz.

References

Frontiers of Materials Research (National Academies of Sciences, Engineering, and Medicine, Washington, DC, 2019), doi:10.17226/25244.CrossRefGoogle Scholar
Broholm, C., Fisher, I., Moore, J., Murname, M., Basic Research Needs Workshop on Quantum Materials for Energy Relevant Technology (2017), http://science.energy.gov/bes/community-resources/reports.CrossRefGoogle Scholar
Chattopadhyay, C.S., Falcone, R., Walsworth, R., Quantum Sensors at the Intersections of Fundamental Science, Quantum Information Science, and Computing (2016), doi:10.2172/1358078.CrossRefGoogle Scholar
Raymer, M.G., Monroe, C., Quantum Sci. Technol. 4, 020504 (2019).CrossRefGoogle Scholar
Riedel, M., Kovacs, M., Zoller, P., Mlynek, J., Calarco, T., Quantum Sci. Technol. 4, 020501 (2019).CrossRefGoogle Scholar
Lau, C.N., Xia, F., Cao, L., MRS Bull. 45 (5), 340 (2020).CrossRefGoogle Scholar
Feynman, R.P., in 1st Conference on Physics and Computation (Institute of Technology, Boston, 1981).Google Scholar
Manin, Y.I., “Computable and Uncomputable,” Sov. Radio (1980).Google Scholar
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S., Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandrà, S., McClean, J.R., McEwen, M., Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C., Sank, D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga, B., White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M., Nature 574, 505 (2019).CrossRefGoogle Scholar
DiVincenzo, D.P., Fortschr. Phys. 9, 771 (2000).Google Scholar
Hanson, R., Gywat, O., Awschalom, D.D., Phys. Rev. B Condens. Matter Mater. Phys. 74, 161203 (2006).CrossRefGoogle Scholar
Slussarenko, S., Pryde, G.J., Appl. Phys. Rev. 6, 041303 (2019).CrossRefGoogle Scholar
Monroe, C., Kim, J., Science 339, 1164 (2013).CrossRefGoogle Scholar
Devoret, M.H., Martinis, J.M., Exp. Aspects Quantum Comput. 3, 163 (2005).Google Scholar
Oliver, W.D., Welander, P.B., MRS Bull. 38, 816 (2013).CrossRefGoogle Scholar
Kjaergaard, M., Schwartz, M.E., Braumüller, J., Krantz, P., Wang, J.I.-J., Gustavsson, S., Oliver, W.D., Annu. Rev. Condens. Matter Phys. 11, 369 (2020).CrossRefGoogle Scholar
Krantz, P., Kjaergaard, M., Yan, F., Orlando, T.P., Gustavsson, S., Oliver, W.D., Appl. Phys. Rev. 6, 021318 (2019).CrossRefGoogle Scholar
Hanson, R., Kouwenhoven, L.P., Petta, J.R., Tarucha, S., Vandersypen, L.M.K., Rev. Mod. Phys. 79, 1217 (2007).Google Scholar
Zwanenburg, F.A., Dzurak, A.S., Morello, A., Simmons, M.Y., Hollenberg, L.C.L., Klimeck, G., Rogge, S., Coppersmith, S.N., Eriksson, M.A., Rev. Mod. Phys. 85, 961 (2013).CrossRefGoogle Scholar
Eriksson, M.A., Coppersmith, S.N., Lagally, M.G., MRS Bull. 38, 794 (2013).CrossRefGoogle Scholar
Awschalom, D.D., Bassett, L.C., Dzurak, A.S., Hu, E.L., Petta, J.R., Science 339, 1174 (2013).CrossRefGoogle Scholar
Hite, D.A., Colombe, Y., Wilson, A.C., Allcock, D.T.C., Leibfried, D., Wineland, D.J., Pappas, D.P., MRS Bull. 38, 826 (2013).CrossRefGoogle Scholar
Bruzewicz, C.D., Chiaverini, J., McConnell, R., Sage, J.M., Appl. Phys. Rev. 6, 021314 (2019).CrossRefGoogle Scholar
Witzel, W.M., Carroll, M.S., Morello, A., Cywiński, Ł., Sarma, S. Das, Phys. Rev. Lett. 105, 187602 (2010).Google Scholar
Bar-Gill, N., Pham, L.M., Belthangady, C., Le Sage, D., Cappellaro, P., Maze, J.R., Lukin, M.D., Yacoby, A., Walsworth, R., Nat. Commun. 3, 856 (2012).CrossRefGoogle Scholar
Eng, K., Ladd, T.D., Smith, A., Borselli, M.G., Kiselev, A.A., Fong, B.H., Holabird, K.S., Hazard, T.M., Huang, B., Deelman, P.W., Milosavljevic, I., Schmitz, A.E., Ross, R.S., Gyure, M.F., Hunter, A.T., Sci. Adv. 1, e1500214 (2015).CrossRefGoogle Scholar
Freer, S., Simmons, S., Laucht, A., Muhonen, J.T., Dehollain, J.P., Kalra, R., Mohiyaddin, F.A., Hudson, F.E., Itoh, K.M., McCallum, J.C., Jamieson, D.N., Dzurak, A.S., Morello, A., Quantum Sci. Technol. 2, 15009 (2017).CrossRefGoogle Scholar
Muhonen, J.T., Dehollain, J.P., Laucht, A., Hudson, F.E., Kalra, R., Sekiguchi, T., Itoh, K.M., Jamieson, D.N., McCallum, J.C., Dzurak, A.S., Morello, A., Nat. Nanotechnol. 9, 986 (2014).CrossRefGoogle Scholar
Tyryshkin, A.M., Tojo, S., Morton, J.J.L., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Schenkel, T., Thewalt, M.L.W., Itoh, K.M., Lyon, S.A., Nat.Mater. 11, 143 (2012).CrossRefGoogle Scholar
Borselli, M.G., Ross, R.S., Kiselev, A.A., Croke, E.T., Holabird, K.S., Deelman, P.W., Warren, L.D., Alvarado-Rodriguez, I., Milosavljevic, I., Ku, F.C., Wong, W.S., Schmitz, A.E., Sokolich, M., Gyure, M.F., Hunter, A.T., Appl. Phys. Lett. 98, 123118 (2011).CrossRefGoogle Scholar
Gamble, J.K., Harvey-Collard, P., Jacobson, N.T., Baczewski, A.D., Nielsen, E., Maurer, L., Montaño, I., Rudolph, M., Carroll, M.S., Yang, C.H., Rossi, A., Dzurak, A.S., Muller, R.P., Appl. Phys. Lett. 109, 253101 (2016).CrossRefGoogle Scholar
Zhang, L., Luo, J.W., Saraiva, A., Koiller, B., Zunger, A., Nat. Commun. 4, 2396 (2013).Google Scholar
Friesen, M., Eriksson, M.A., Coppersmith, S.N., Appl. Phys. Lett. 89, 202106 (2006).CrossRefGoogle Scholar
Boykin, T.B., Klimeck, G., Eriksson, M.A., Friesen, M., Coppersmith, S.N., Von Allmen, P., Oyafuso, F., Lee, S., Appl. Phys. Lett. 84, 115 (2004).CrossRefGoogle Scholar
Hendrickx, N.W., Franke, D.P., Sammak, A., Kouwenhoven, M., Sabbagh, D., Yeoh, L., Li, R., Tagliaferri, M.L.V., Virgilio, M., Capellini, G., Scappucci, G., Veldhorst, M., Nat. Commun. 9, 2835 (2018).CrossRefGoogle Scholar
Konaka, T., Sato, M., Asano, H., Kubo, S., J. Supercond. 4, 283 (1991).CrossRefGoogle Scholar
Giaever, I., Phys. Rev. Lett. 46, 245 (1974).Google Scholar
Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., Malley, P.J.J.O., Sank, D., Vainsencher, A., Wenner, J., Appl. Phys. Lett. 100, 113510 (2012).CrossRefGoogle Scholar
Sage, J.M., Bolkhovsky, V., Oliver, W.D., Turek, B., Welander, P.B., J. Appl. Phys. 109, 063915 (2011).CrossRefGoogle Scholar
Chang, J.B., Vissers, M.R., Córcoles, A.D., Sandberg, M., Gao, J., David, W., Chow, J.M., Gambetta, J.M., Rothwell, M.B., Keefe, G.A., Steffen, M., Pappas, P., Sandberg, M., Chang, J.B., Vissers, M.R., Antonio, D.C., Gao, J., Abraham, D.W., Chow, J.M., Gambetta, J.M., Rothwell, M.B., Keefe, G.A., Steffen, M., Pappas, D.P., Appl. Phys. Lett. 103, 012602 (2013).Google Scholar
Seidelin, S., Chiaverini, J., Reichle, R., Bollinger, J.J., Leibfried, D., Britton, J., Wesenberg, J.H., Blakestad, R.B., Epstein, R.J., Hume, D.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Shiga, N., Wineland, D.J., Phys. Rev. Lett. 96, 253003 (2006).CrossRefGoogle Scholar
Chiaverini, J., Sage, J.M., Phys. Rev. A At. Mol. Opt. Phys. 89, 012318 (2014).CrossRefGoogle Scholar
Sedlacek, J.A., Stuart, J., Slichter, D.H., Bruzewicz, C.D., McConnell, R., Sage, J.M., Chiaverini, J., Phys. Rev. A 98, 063430 (2018).CrossRefGoogle Scholar
Hite, D.A., Colombe, Y., Wilson, A.C., Brown, K.R., Warring, U., Jördens, R., Jost, J.D., McKay, K.S., Pappas, D.P., Leibfried, D., Wineland, D.J., Phys. Rev. Lett. 109, 103001 (2012).CrossRefGoogle Scholar
Daniilidis, N., Gerber, S., Bolloten, G., Ramm, M., Ransford, A., Ulin-Avila, E., Talukdar, I., Häffner, H., Phys. Rev. B Condens. Matter Mater. Phys. 89, 245435 (2014).CrossRefGoogle Scholar
McKay, K.S., Hite, D.A., Colombe, Y., Jördens, R., Wilson, A.C., Slichter, D.H., Allcock, D.T.C., Leibfried, D., Wineland, D.J., D.P. Pappas, arXiv:1406.1778 (2014).Google Scholar
McConnell, R., Bruzewicz, C., Chiaverini, J., Sage, J., Phys. Rev. A At. Mol. Opt. Phys. 92, 020302 (2015).CrossRefGoogle Scholar
Barends, R., Wenner, J., Lenander, M., Chen, Y., Bialczak, R.C., Kelly, J., Lucero, E., O'Malley, P., Mariantoni, M., Sank, D., Wang, H., White, T.C., Yin, Y., Zhao, J., Cleland, A.N., Martinis, J.M., Baselmans, J.J.A., Appl. Phys. Lett. 99, 113507 (2011).CrossRefGoogle Scholar
Culcer, D., Zimmerman, N.M., Appl. Phys. Lett. 102, 232108 (2013).CrossRefGoogle Scholar
De Sousa, R., Phys. Rev. B Condens. Matter Mater. Phys. 76, 245306 (2007).Google Scholar
Culcer, D., Hu, X., Das Sarma, S., Appl. Phys. Lett. 95, 073102 (2009).CrossRefGoogle Scholar
Radmore, P.M., Knight, P.L., J. Phys. B At. Mol. Phys. 15, 561 (1982).CrossRefGoogle Scholar
Hioe, F.T., Phys. Rev. A 28, 879 (1983).CrossRefGoogle Scholar
Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J., Phys. Rev. A At. Mol. Opt. Phys. 75, 032329 (2007).CrossRefGoogle Scholar
Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J., Phys. Rev. A At. Mol. Opt. Phys. 76, 042319 (2007).CrossRefGoogle Scholar
Dial, O., McClure, D.T., Poletto, S., Keefe, G.A., Rothwell, M.B., Gambetta, J.M., Abraham, D.W., Chow, J.M., Steffen, M., Supercond. Sci. Technol. 29, 044001 (2016).CrossRefGoogle Scholar
Sandberg, M., Vissers, M.R., Kline, J.S., Weides, M., Gao, J., Wisbey, D.S., Pappas, D.P., Appl. Phys. Lett. 100, 262605 (2012).CrossRefGoogle Scholar
Gao, J., Daal, M., Vayonakis, A., Kumar, S., Zmuidzinas, J., Sadoulet, B., Mazin, B.A., Day, P.K., Leduc, H.G., Appl. Phys. Lett. 92, 152505 (2008).Google Scholar
Richardson, C.J.K., Siwak, N.P., Hackley, J., Keane, Z.K., Robinson, J.E., Arey, B., Arslan, I., Palmer, B.S., Supercond. Sci. Technol. 29, 64003 (2016).CrossRefGoogle Scholar
De Graaf, S.E., Faoro, L., Burnett, J., Adamyan, A.A., Tzalenchuk, A.Y., Kubatkin, S.E., Lindström, T., Danilov, A.V., Nat. Commun. 9, 1143 (2018).CrossRefGoogle Scholar
Shankar, S., Tyryshkin, A.M., He, J., Lyon, S.A., Phys. Rev. B Condens. Matter Mater. Phys. 82, 195323 (2010).CrossRefGoogle Scholar
Adelstein, N., Lee, D., DuBois, J.L., Ray, K.G., Varley, J.B., Lordi, V., AIP Adv. 7, 025110 (2017).Google Scholar
Gordon, L., Abu-Farsakh, H., Janotti, A., Van de Walle, C.G., Sci. Rep. 4, 7590 (2014).Google Scholar
Holder, A.M., Osborn, K.D., Lobb, C.J., Musgrave, C.B., Phys. Rev. Lett. 111, 065901 (2013).CrossRefGoogle Scholar
Mcdermott, R., IEEE Trans. Appl. Supercond. 19, 2 (2009).CrossRefGoogle Scholar
Brehm, J.D., Bilmes, A., Weiss, G., Ustinov, A.V., Lisenfeld, J., Appl. Phys. Lett. 111, 112601 (2017).CrossRefGoogle Scholar
McRae, C.R.H., Lake, R.E., Long, J.L., Bal, M., Wu, X., Jugdersuren, B., Metcalf, T.H., Liu, X., D.P. Pappas, arXiv a:1909.07428 (2019).Google Scholar
Müller, C., Cole, J.H., Lisenfeld, J., Rep. Prog. Phys. 82, 124501 (2019).CrossRefGoogle Scholar
Paz, A.P., Lebedeva, I.V., Tokatly, I.V., Rubio, A., Phys. Rev. B Condens. Matter Mater. Phys. 90, 224202 (2014).CrossRefGoogle Scholar
Wang, C., Gao, Y.Y., Pop, I.M., Vool, U., Axline, C., Brecht, T., Heeres, R.W., Frunzio, L., Devoret, M.H., Catelani, G., Glazman, L.I., Schoelkopf, R.J., Nat.Commun. 5, 5839 (2014).Google Scholar
Catelani, G., Koch, J., Frunzio, L., Schoelkopf, R.J., Devoret, M.H., Glazman, L.I., Phys. Rev. Lett. 106, 077002 (2011).CrossRefGoogle Scholar
Gustafsson, M.V., Pourkabirian, A., Johansson, G., Clarke, J., Delsing, P., Phys. Rev. B Condens. Matter Mater. Phys. 88, 245410 (2013).CrossRefGoogle Scholar
Ramon, G., Hu, X., Phys. Rev. B Condens. Matter Mater. Phys. 81, 045304 (2010).CrossRefGoogle Scholar
Bylander, J., Gustavsson, S., Yan, F., Yoshihara, F., Harrabi, K., Fitch, G., Cory, D.G., Nakamura, Y., Tsai, J.S., Oliver, W.D., Nat. Phys. 7, 565 (2011).CrossRefGoogle Scholar
Yan, F., Gustavsson, S., Bylander, J., Jin, X., Yoshihara, F., Cory, D.G., Nakamura, Y., Orlando, T.P., Oliver, W.D., Nat. Commun. 4, 2337 (2013).Google Scholar
Sarabi, B., Ramanayaka, A.N., Burin, A.L., Wellstood, F.C., Osborn, K.D., Phys. Rev. Lett. 116, 167002 (2016).CrossRefGoogle Scholar
Lisenfeld, J., Grabovskij, G.J., Müller, C., Cole, J.H., Weiss, G., Ustinov, A.V., Nat.Commun. 6, 6182 (2015).CrossRefGoogle Scholar
Schlör, S., Lisenfeld, J., Müller, C., Bilmes, A., Schneider, A., Pappas, D.P., Ustinov, A.V., Weides, M., Phys. Rev. Lett. 123, 190502 (2019).CrossRefGoogle Scholar
Lee, D., DuBois, J.L., Lordi, V., Phys. Rev. Lett. 112, 017001 (2014).Google Scholar
Rangelow, I.W., J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 13, 2394 (1995).CrossRefGoogle Scholar
Quintana, C.M., Megrant, A., Chen, Z., Dunsworth, A., Chiaro, B., Barends, R., Campbell, B., Chen, Y., Hoi, I.-C., Jeffrey, E., Kelly, J., Mutus, J.Y., O'Malley, P.J.J., Neill, C., Roushan, P., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Cleland, A.N., Martinis, J.M., Appl. Phys. Lett. 105, 062601 (2014).CrossRefGoogle Scholar
Liu, X.Y., Arslan, I., Arey, B.W., Hackley, J., Lordi, V., Richardson, C.J.K., ACS Nano 12, 6843 (2018).Google Scholar
Shabani, J., Kjaergaard, M., Suominen, H.J., Kim, Y., Nichele, F., Pakrouski, K., Stankevic, T., Lutchyn, R.M., Krogstrup, P., Feidenhans'l, R., Kraemer, S., Nayak, C., Troyer, M., Marcus, C.M., Palmstrom, C.J., Phys. Rev. B Condens. Matter Mater. Phys. 93, 155402 (2016).Google Scholar
Gazibegovic, S., Car, D., Zhang, H., Balk, S.C., Logan, J.A., De Moor, M.W.A., Cassidy, M.C., Schmits, R., Xu, D., Wang, G., Krogstrup, P., Op Het Veld, R.L.M., Zuo, K., Vos, Y., Shen, J., Bouman, D., Shojaei, B., Pennachio, D., Lee, J.S., Van Veldhoven, P.J., Koelling, S., Verheijen, M.A., Kouwenhoven, L.P., Palmstrøm, C.J., Bakkers, E.P.A.M., Nature 548, 434 (2017).CrossRefGoogle Scholar
Zeng, L.J., Nik, S., Greibe, T., Krantz, P., Wilson, C.M., Delsing, P., Olsson, E., J.Phys. D Appl. Phys. 48, 395308 (2015).Google Scholar
Cyster, M.J., Smith, J.S., Vaitkus, J.A., Vogt, N., Russo, S.P., Cole, J.H., Phys. Rev. Res. 2, 013110 (2019).Google Scholar
De Sousa, R., Whaley, K.B., Hecht, T., Von Delft, J., Wilhelm, F.K., Phys. Rev. B Condens. Matter Mater. Phys. 80, 094515 (2009).Google Scholar
Oh, S., Cicak, K., Kline, J.S., Sillanpaa, M.A., Osborn, K.D., Whittaker, J.D., Simmonds, R.W., Pappas, D.P., Phys. Rev. B Condens. Matter Mater. Phys. 74, 100502 (2006).CrossRefGoogle Scholar
Jamali, M., Gerhardt, I., Rezai, M., Frenner, K., Fedder, H., Wrachtrup, J., Rev. Sci. Instrum. 85, 123703 (2014).CrossRefGoogle Scholar
Appel, P., Neu, E., Ganzhorn, M., Barfuss, A., Batzer, M., Gratz, M., Tschöpe, A., Maletinsky, P., Rev. Sci. Instrum. 87, 063703 (2016).CrossRefGoogle Scholar
Burek, M.J., Chu, Y., Liddy, M.S.Z., Patel, P., Rochman, J., Meesala, S., Hong, W., Quan, Q., Lukin, M.D., Loncar, M., Nat. Commun. 5, 5718 (2014).CrossRefGoogle Scholar
Lyding, J.W., Shen, T.C., Hubacek, J.S., Tucker, J.R., Abeln, G.C., Appl. Phys. Lett. 64, 2010 (1994).CrossRefGoogle Scholar
Cybart, S.A., Cho, E.Y., Wong, T.J., Wehlin, B.H., Ma, M.K., Huynh, C., Dynes, R.C., Nat. Nanotechnol. 10, 598 (2015).CrossRefGoogle Scholar
Shim, Y.P., Tahan, C., Nat. Commun. 5, 4225 (2014).CrossRefGoogle Scholar
Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G., Simmons, M., Nat. Nanotechnol. 7, 242 (2012).CrossRefGoogle Scholar
Saraiva, A.L., Salfi, J., Bocquel, J., Voisin, B., Rogge, S., Capaz, R.B., Calderón, M.J., Koiller, B., Phys. Rev. B. 93, 045303 (2016).CrossRefGoogle Scholar
Safavi-Naini, A., Rabl, P., Weck, P.F., Sadeghpour, H.R., Phys. Rev. A At. Mol. Opt. Phys. 84, 023412 (2011).Google Scholar
Turchette, Q.A., Kielpinski, D., King, B.E., Leibfried, D., Meekhof, D.M., Myatt, C.J., Rowe, M.A., Sackett, C.A., Wood, C.S., Itano, W.M., Monroe, C., Wineland, D.J., Phys. Rev. A At. Mol. Opt. Phys. 61, 8 (2000).CrossRefGoogle Scholar
Richardson, C.J.K., Siwak, N.P., Hackley, J., Keane, Z.K., Robinson, J.E., Arey, B., Arslan, I., Palmer, B.S., Supercond. Sci. Technol. 29, 064003 (2016).CrossRefGoogle Scholar
Earnest, C.T., Béjanin, J.H., McConkey, T.G., Peters, E.A., Korinek, A., Yuan, H., Mariantoni, M., Supercond. Sci. Technol. 31, 125013 (2018).CrossRefGoogle Scholar
Larsen, T.W., Petersson, K.D., Kuemmeth, F., Jespersen, T.S., Krogstrup, P., Nygard, J., Marcus, C.M., Phys. Rev. Lett. 115, 1 (2015).CrossRefGoogle Scholar
Martinis, J.M., Cooper, K.B., McDermott, R., Steffen, M., Ansmann, M., Osborn, K.D., Cicak, K., Oh, S., Pappas, D.P., Simmonds, R.W., Yu, C.C., Phys. Rev. Lett. 95, 210503 (2005).CrossRefGoogle Scholar
Paik, H., Osborn, K.D., Appl. Phys. Lett. 96, 072505 (2010).CrossRefGoogle Scholar
Williams, J.R., Bestwick, A.J., Gallagher, P., Hong, S.S., Cui, Y., Bleich, A.S., Analytis, J.G., Fisher, I.R., Goldhaber-Gordon, D., Phys. Rev. Lett. 109, 056803 (2012).CrossRefGoogle Scholar
Frolov, S.M., Plissard, S.R., Nadj-Perge, S., Kouwenhoven, L.P., Bakkers, E.P.A.M., MRS Bull. 38, 809 (2013).CrossRefGoogle Scholar
Stern, A., Lindner, N.H., Science 339, 1179 (2013).Google Scholar
Krogstrup, P., Ziino, N.L.B., Chang, W., Albrecht, S.M., Madsen, M.H., Johnson, E., Nygård, J., Marcus, C.M., Jespersen, T.S., Nat. Mater. 14, 400 (2015).Google Scholar
Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y., Phys. Rev. X 2, 031007 (2012).Google Scholar
Van Meter, R., Horsman, C., Commun. ACM 56, 84 (2013).CrossRefGoogle Scholar
Ahsan, M., Van Meter, R., Kim, J., ACM J. Emerg. Technol. Comput. Syst. 12, 39 (2015).Google Scholar
DiVincenzo, D.P., Shor, P.W., Phys. Rev. Lett. 77, 3260 (1996).CrossRefGoogle Scholar
Knill, E., Laflamme, R., Phys. Rev. A At. Mol. Opt. Phys. 55, 900 (1997).CrossRefGoogle Scholar
Kitaev, A.Y., Russ. Math. Surv. 52, 1191 (1997).CrossRefGoogle Scholar
Steane, A.M., Nature 399, 124 (1999).CrossRefGoogle Scholar
Steane, A.M., Phys. Rev. A At. Mol. Opt. Phys. 54, 4741 (1996).CrossRefGoogle Scholar
Das Sarma, S., Freedman, M., Nayak, C., Phys. Today 59, 32 (2006).Google Scholar
Qi, X.L., Hughes, T.L., Zhang, S.C., Phys. Rev. B Condens. Matter Mater. Phys. 82, 184516 (2010).Google Scholar
Sasaki, S., Kriener, M., Segawa, K., Yada, K., Tanaka, Y., Sato, M., Ando, Y., Phys. Rev. Lett. 107, 217001 (2011).Google Scholar
Zhang, P., Yaji, K., Hashimoto, T., Ota, Y., Kondo, T., Okazaki, K., Wang, Z., Wen, J., Gu, G.D., Ding, H., Shin, S., Science 360, 182 (2018).Google Scholar
Lutchyn, R.M., Bakkers, E.P.A.M., Kouwenhoven, L.P., Krogstrup, P., Marcus, C.M., Oreg, Y., Nat. Rev. Mater. 3, 52 (2018).CrossRefGoogle Scholar
Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N., Phys. Rev. A At. Mol. Opt. Phys. 86, 032324 (2012).Google Scholar
Bruzewicz, C.D., Chiaverini, J., McConnell, R., Sage, J.M., Appl. Phys. Rev. 6, 021314 (2019).CrossRefGoogle Scholar
Rosenberg, D., Kim, D., Das, R., Yost, D., Gustavsson, S., Hover, D., Krantz, P., Melville, A., Racz, L., Samach, G.O., Weber, S.J., Yan, F., Yoder, J.L., Kerman, A.J., Oliver, W.D., NPJ Quantum Inf. 3, 42 (2017).CrossRefGoogle Scholar
Amemiya, N., Tsukamoto, O., IEEE Trans. Appl. Supercond. 5, 218 (1995).Google Scholar
Barannikova, S., Shlyakhova, G., Zuev, L., Malinovskiy, A., Int. J. GEOMATE 10, 1906 (2016).Google Scholar
Kang, S.G., Kim, M.G., Kim, C.G., Compos. Struct. 78, 440 (2007).CrossRefGoogle Scholar
Preskill, J., Quantum 2, 79 (2018).□CrossRefGoogle Scholar