Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T14:17:58.294Z Has data issue: false hasContentIssue false

Organic/Inorganic Hybrids for Solar Energy Generation

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Organic and hybrid (organic/inorganic) solar cells are an attractive alternative to traditional silicon-based photovoltaics due to low-temperature, solution-based processing and the potential for rapid, easily scalable manufacturing. Using oxide semiconductors, instead of fullerenes, as the electron acceptor and transporter in hybrid solar cells has the added advantages of better environmental stability, higher electron mobility, and the ability to engineer interfacial band offsets and hence the photovoltage. Further improvements to this structure can be made by using metal oxide nanostructures to increase heterojunction areas, similar to bulk heterojunction organic photovoltaics. However, compared to all-organic solar cells, these hybrid devices produce far lower photocurrent, making improvement of the photocurrent the highest priority. This points to a less than optimized polymer/metal oxide interface for carrier separation. In this article, we summarize recent work on examining the polymer structure, electron transfer, and recombination at the polythiophene-ZnO interface in hybrid solar cells. Additionally, the impact of chemical modification at the donor-acceptor interface on the device characteristics is reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Brabec, C.J., Durrant, J., MRS Bull. 33, 670 (2008).CrossRefGoogle Scholar
2.Brabec, C.J., Hauch, J.A., Schilinsky, P., Waldauf, C., MRS Bull. 30, 50 (2005).CrossRefGoogle Scholar
3.Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y., Nat. Mater. 4, 864 (2005).CrossRefGoogle Scholar
4.Kim, Y., Cook, S., Tuladhar, S., Choulis, S., Nelson, J., Durrant, J., Bradley, D., Giles, M., Mcculloch, I., Ha, C., Ree, M., Nat. Mater. 5, 197 (2006).CrossRefGoogle Scholar
5.Kim, J.Y., Kim, S.H., Lee, H., Lee, K., Ma, W., Gong, X., Heeger, A., Adv. Mater. 18, 572 (2006).CrossRefGoogle Scholar
6.Liang, Y., Xu, Z., Xia, J., Tsai, S.-T., Wu, Y., Li, G., Ray, C., Yu, L., Adv. Mater. 2010. DOI: 10.1002/adma.200903528.Google Scholar
7.Sun, X.W., Huang, J.Z., Wang, J.X., Xu, Z., Nano Lett. 8, 1219 (2008).CrossRefGoogle Scholar
8.Blumstengel, S., Sadofev, S., Henneberger, F., New Journal of Physics 10, 065010 (2008).CrossRefGoogle Scholar
9.Baxter, J.B., Aydil, E.S., Appl. Phys. Lett. 86, 053114 (2005).CrossRefGoogle Scholar
10.Hochbaum, A.I., Yang, P., Chem Rev. 110, 527 (2010).CrossRefGoogle Scholar
11.Hau, S., Yip, H., Baek, N., Zou, J., O'Malley, K., Jen, A., Appl. Phys. Lett. 92, 253301 (2008).CrossRefGoogle Scholar
12.Krebs, F.C., Sol. Energy Mater. Sol. Cells 92, 715 (2008).CrossRefGoogle Scholar
13.Li, C., Wen, T., Lee, T., Guo, T., Huang, J., Lin, Y., Hsu, Y., J. Mater. Chem. 19, 1643 (2009).CrossRefGoogle Scholar
14.Lloyd, M.T., Olson, D.C., Lu, P., Fang, E., Moore, D.L., White, M.S., Reese, M.O., Ginley, D.S., Hsu, J.W.P., J. Mater. Chem. 19, 7638 (2009).CrossRefGoogle Scholar
15.Olson, D., Shaheen, S., White, M., Mitchell, W., van Hest, M., Collins, R., Ginley, D., Adv. Funct. Mater. 17, 264 (2007).CrossRefGoogle Scholar
16.Lloyd, M.T., Lee, Y.-J., Davis, R.J., Fang, E., Fleming, R.M., Kline, R.J., Toney, M.F., Hsu, J.W.P., J. Phys. Chem. C 113, 17608 (2009).CrossRefGoogle Scholar
17.Coakley, K.M., McGehee, M.D., Appl. Phys. Lett. 83, 3380 (2003).CrossRefGoogle Scholar
18.Olson, D., Piris, J., Collins, R., Shaheen, S., Ginley, D., Thin Solid Films 496, 26 (2006).CrossRefGoogle Scholar
19.Park, W.I., Kim, D.H., Jung, S.W., Yi, G.-C., Appl. Phys. Lett. 80, 4232 (2002).CrossRefGoogle Scholar
20.Hughes, W.L., Wang, Z.L., Appl. Phys. Lett. 86, 043106 (2005).CrossRefGoogle Scholar
21.Heo, Y.W., Varadarajan, V., Kaufman, M., Kim, K., Norton, D.P., Ren, F., Fleming, P.H., Appl. Phys. Lett. 81, 3046 (2002).CrossRefGoogle Scholar
22.Vayssieres, L., Keis, K., Lindquist, S.-E., Hagfeldt, A., J. Phys. Chem. B 105, 3350 (2001).CrossRefGoogle Scholar
23.Tian, Z.R., Voigt, J.A., Liu, J., McKenzie, B., McDermott, M.J., Rodriguez, M.A., Konishi, H., Xu, H., Nat. Mater. 2, 821 (2003).CrossRefGoogle Scholar
24.Peterson, R.B., Fields, C.L., Gregg, B.A., Langmuir 20, 5114 (2004).CrossRefGoogle Scholar
25.Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai, G., Yang, P., Nano Lett. 5, 1231 (2005).CrossRefGoogle Scholar
26.Beek, W.J., Wienk, M.M., Kemerink, M., Yang, X.N., Janssen, R.A., J. Phys. Chem B 109, 9505 (2005).CrossRefGoogle Scholar
27.Bashir, A., Wobkenberg, P.H., Smith, J., Ball, J.M., Adamopoulos, G., Bradley, D.D.C., Anthopoulos, T.D., Adv. Mater. 21, 2226 (2009).CrossRefGoogle Scholar
28.Beek, W.J.E., Slooff, L.H., Wienk, M.M., Kroon, J.M., Janssen, R.A., Adv. Func. Mater. 15, 1703 (2005).CrossRefGoogle Scholar
29.Moet, D.J.D., Koster, L.J.A., de Boer, B., Blom, P.W.M., Chem. Mat. 19, 5856 (2007).CrossRefGoogle Scholar
30.Beek, W.J.E., Wienk, M.M., Janssen, R.A.J., Adv. Funct. Mater. 16, 1112 (2006).CrossRefGoogle Scholar
31.Ratcliff, E.L., Jenkins, J.L., Nebesny, K., Armstrong, N.R., Chem. Mater. 20, 5796 (2008).CrossRefGoogle Scholar
32.Tong, S., Zhang, C., Jiang, C., Ling, Q., Kang, E., Chan, D., Zhu, C., Appl. Phys. Lett. 93, 043304 (2008).CrossRefGoogle Scholar
33.Monson, T., Lloyd, M., Olson, D., Lee, Y., Hsu, J., Adv. Mater. 20, 4755 (2008).CrossRefGoogle Scholar
34.Goh, C., Scully, S.R., McGehee, M.D., J. Appl. Phys. 101, 114503 (2007).CrossRefGoogle Scholar
35.Hau, S., Yip, H.-L., Ma, H., Jen, A., Appl. Phys. Lett. 93, 233304 (2008).CrossRefGoogle Scholar
36.Spoerke, E.D., Lloyd, M.T., Martin, E.S., Olson, D.C., Lee, Y.-J., Hsu, J.W.P., Appl. Phys. Lett. 95, 213506 (2009).CrossRefGoogle Scholar
37.Greene, L., Law, M., Yuhas, B.D., Yang, P., J. Phys. Chem. C 111, 18451 (2007).CrossRefGoogle Scholar
38.Lin, Y., Chu, T., Chen, C., Su, W., Appl. Phys. Lett. 92, 053312 (2008).CrossRefGoogle Scholar
39.Ravirajan, P., Peiro, A.M., Nazeeruddin, M.K., Graetzel, M., Bradley, D.D.C., Durrant, J.R., Nelson, J., J. Phys. Chem. B 110, 7635 (2006).CrossRefGoogle Scholar
40.Lin, Y.-Y., Lee, Y.-Y., Chang, L., Wu, J.-J., Chen, C.-W., Appl. Phys. Lett. 94, 063308 (2009).CrossRefGoogle Scholar
41.Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., de Leeuw, D.M., Nature 401, 685 (1999).CrossRefGoogle Scholar
42.Wang, G., Swensen, J., Moses, D., Heeger, A.J., J. Appl. Phys. 93, 6137 (2003).CrossRefGoogle Scholar
43.Cho, S., Lee, K., Yuen, J., Wang, G., Moses, D., Heeger, A.J., Surin, M., Lazzaroni, R., J. Appl. Phys. 100, 114503 (2006).CrossRefGoogle Scholar
44.Kline, R.J., McGehee, M.D., Kadnikova, E.N., Liu, J., Frechet, J.M.J., Adv. Mater. 15, 1519 (2003).CrossRefGoogle Scholar
45.Kim, Y., Cook, S., Tuladhar, S.M., Choulis, S.A., Nelson, J., Durrant, J.R., Bradley, D.D.C., Giles, M., McCulloch, I., Ha, C.-S., Ree, M., Nat. Mater. 5, 197 (2006).CrossRefGoogle Scholar
46.Chang, J.-F., Sun, B., Breiby, D.W., Nielsen, M.M., Solling, T.I., Giles, M., McCulloch, I., Sirringhaus, H., Chem. Mater. 16, 4772 (2004).CrossRefGoogle Scholar
47.Ma, W., Yang, C., Gong, X., Lee, K., Heeger, A.J., Adv. Func. Mater. 15, 1617 (2005).CrossRefGoogle Scholar
48.Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y., Nat. Mater. 4, 864 (2005).CrossRefGoogle Scholar
49.DeLongchamp, D., Vogel, B.M., Jung, Y., Gurau, M.C., Richter, C.A., Kirillov, Ol A., Obrzut, J., Fischer, D.A., Sambasivan, S., Richter, L.J., Lin, E.K., Chem. Mater. 17, 5610 (2005).CrossRefGoogle Scholar
50.Kline, R.J., DeLongchamp, D.M., Fischer, D.A., Lin, E.K., Heeney, M., McCulloch, I., Toney, M.F., Appl. Phys. Lett. 90, 062117 (2007).CrossRefGoogle Scholar
51.Lloyd, M.T., Prasankumar, R.P., Sinclair, M.B., Mayer, A.C., Olson, D.C., Hsu, J.W.P., J. Mater. Chem. 19, 4609 (2009).CrossRefGoogle Scholar
52.Quist, P.A.C., Beek, W., Wienk, M., Janssen, R.A.J., Siebbeles, L.D.A., J. Phys. Chem. B 110, 10315 (2006).CrossRefGoogle Scholar
53.Veres, J., Ogier, S., Lloyd, G., de Leeuw, D.M., Chem. Mater. 16, 4543 (2004).CrossRefGoogle Scholar
54.Kline, R.J., Mcgehee, M.D., Toney, M.F., Nat. Mater. 5, 222 (2006).CrossRefGoogle Scholar
55.Spano, F., J. Chem. Phys. 122, 234701 (2005).CrossRefGoogle Scholar
56.Inganas, O., Salaneck, W.R., Osterhom, J.-E., Laakso, J., Synth. Met. 22, 395 (1988).CrossRefGoogle Scholar
57.Brown, P.J., Thomas, D.S., Kohler, A., Wilson, J.S., Kim, J.-S., Ramsdale, C.M., Sirringhaus, H., Friend, R.H., Phys. Rev. B 16, 064203 (2003).CrossRefGoogle Scholar
58.Clark, J., Silva, C., Friend, R.H., Spano, F.C., Phys. Rev. Lett. 98, 206406 (2007).CrossRefGoogle Scholar
59.Yang, H.H., LeFevre, S.W., Ryu, C.Y., Bao, Z.N., Appl. Phys. Lett. 90, 172116 (2007).CrossRefGoogle Scholar
60.Lide, D.R., Ed., Handbook of Chemistry and Physics, 84th Edition (Boca Rotan, FL, 2003), Vol. Section 9, pp. 5264.Google Scholar
61.Peet, J., Kim, J., Coates, N., Ma, W., Moses, D., Heeger, A., Bazan, G., Nat. Mater. 6, 497 (2007).CrossRefGoogle Scholar
62.Sheng, C.X., Tong, M., Singh, S., Vardeny, Z.V., Phys. Rev. B 75, 085206 (2007).CrossRefGoogle Scholar
63.Osterbacka, R., An, C.P., Jiang, X.M., Vardeny, Z.V., Science 287, 839 (2000).CrossRefGoogle Scholar
64.Ai, X., Anderson, N., Guo, J.C., Kowalik, J., Tolbert, L.M., Lian, T.Q., J. Phys. Chem. B 110, 25496 (2006).CrossRefGoogle Scholar
65.Piris, J., Kopidakis, N., Olson, D.C., Shaheen, S.E., Ginley, D.S., Rumbles, G., Adv. Funct. Mater. 17, 3849 (2007).CrossRefGoogle Scholar
66.Malliaras, G.G., Salem, J.R., Brock, P.J., Scott, J.C., J. Appl. Phys. 84, 1583 (1998).CrossRefGoogle Scholar
67.Marks, R.N., Halls, J.J.M., Bradley, D.D.C., Friend, R.H., Holmes, A.B., J. Phys. Condens. Mater. 6, 1379 (1994).CrossRefGoogle Scholar
68.Oosterhout, S.D., Wienk, M.M., Bavel, S.S.v., Thiedmann, R., Koster, L.J.A., Gilot, J., Loos, J., Schmidt, V., Janssen, R.A.J., Nat. Mater. 8, 1 (2009).CrossRefGoogle Scholar