Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T02:31:03.743Z Has data issue: false hasContentIssue false

“Stretching” the energy landscape of oxides—Effects on electrocatalysis and diffusion

Published online by Cambridge University Press:  12 February 2014

Bilge Yildiz*
Affiliation:
Nuclear Science and Engineering Department, Massachusetts Institute of Technology; email byildiz@mit.edu
Get access

Abstract

Elastic strain engineering offers a new route to enable high-performance catalysts, electrochemical energy conversion devices, separation membranes and memristors. By applying mechanical stress, the inherent energy landscape of reactions involved in the material can be altered. This is the so-called mechano-chemical coupling. Here we discuss how elastic strain activates reactions on metals and oxides. We also present analogies to strained polymer reactions. A rich set of investigations have been performed on strained metal surfaces over the last 15 years, and the mechanistic reasons behind strain-induced reactivity are explained by an electronic structure model. On the other hand, the potential of strain engineering of oxides for catalytic and energy applications has been largely underexplored. In oxides, mechanical stress couples to reaction and diffusion kinetics by altering the oxygen defect formation enthalpy, migration energy barrier, adsorption energy, dissociation barrier, and charge transfer barrier. A generalization of the principles for stress activated reactions from polymers to metals to oxides is offered, and the prospect of using elastic strain to tune reaction and diffusion kinetics in functional oxides is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, A.T., Science 299 (5613), 1688 (2003).CrossRefGoogle Scholar
Steele, B.C.H., Heinzel, A., Nature 414 (6861), 345 (2001).Google Scholar
Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G.F., Ross, P.N., Lucas, C.A., Markovic, N.M., Science 315 (5811), 493 (2007).Google Scholar
Jacobson, M.Z., Colella, W.G., Golden, D.M., Science 308 (5730), 1901 (2005).CrossRefGoogle Scholar
Zhang, J.L., Vukmirovic, M.B., Xu, Y., Mavrikakis, M., Adzic, R.R., Angew. Chem. Int. Ed. Engl. 44 (14), 2132 (2005).CrossRefGoogle Scholar
Costentin, C., Drouet, S., Robert, M., Saveant, J.M., Science 338 (6103), 90 (2012).CrossRefGoogle Scholar
Nakato, Y., Takamori, N., Tsubomura, H., Nature 295 (5847), 312 (1982).CrossRefGoogle Scholar
Chueh, W.C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S.M., Steinfeld, A., Science 330 (6012), 1797 (2010).CrossRefGoogle Scholar
Tarascon, J.M., Armand, M., Nature 414 (6861), 359 (2001).Google Scholar
Kang, B., Ceder, G., Nature 458 (7235), 190 (2009).Google Scholar
Caruso, M.M., Davis, D.A., Shen, Q., Odom, S.A., Sottos, N.R., White, S.R., Moore, J.S., Chem. Rev. 109 (11), 5755 (2009).CrossRefGoogle Scholar
Hickenboth, C.R., Moore, J.S., White, S.R., Sottos, N.R., Baudry, J., Wilson, S.R., Nature 446 (7134), 423 (2007).Google Scholar
Liang, J., Fernandez, M., ACS Nano 3 (7), 1628 (2009).Google Scholar
Davis, D.A., Hamilton, A., Yang, J.L, Cremar, L.D., Van Gough, D., Potisek, S.L., Ong, M.T., Braun, P.V., Martinez, T.J., White, S.R., Nature 459 (7243), 68 (2009).Google Scholar
Grabow, L., Xu, Y., Mavrikakis, M., Phys. Chem. Chem. Phys. 8 (29), 3369 (2006).CrossRefGoogle Scholar
Craig, S.L., Nature 487 (7406), 176 (2012).Google Scholar
Akbulatov, S., Tian, Y., Boulatov, R., J. Am. Chem. Soc. 134 (18), 7620 (2012).CrossRefGoogle Scholar
Mavrikakis, M., Hammer, B., Norskov, J.K., Phys. Rev. Lett. 81 (13), 2819 (1998).CrossRefGoogle Scholar
Gsell, M., Jakob, P., Menzel, D., Science 280 (5364), 717 (1998).Google Scholar
Mavrikakis, M., Stoltze, P., Norskov, J.K., Catal. Lett. 64 (2-4), 101 (2000).CrossRefGoogle Scholar
Hammer, B., Norskov, J.K., Surf. Sci. 343, 211 (1995).CrossRefGoogle Scholar
Wintterlin, J., Zambelli, T., Trost, J., Greeley, J., Mavrikakis, M., Angew. Chem. Int. Ed. Engl. 42 (25), 2850 (2003).Google Scholar
Xu, Y., Mavrikakis, M., J. Phys. Chem. B 107 (35), 9298 (2003).CrossRefGoogle Scholar
Xu, Y., Mavrikakis, M., Surf. Sci. 494 (2), 131 (2001).CrossRefGoogle Scholar
Greeley, J., Krekelberg, W.R., Mavrikakis, M., Angew. Chem. Int. Ed. Engl. 43 (33), 4296 (2004).Google Scholar
Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C.F., Liu, Z.C., Kaya, S., Nordlund, D., Ogasawara, H., Nat. Chem. 2 (6), 454 (2010).CrossRefGoogle Scholar
Herbert, F.W., Van Vliet, K.J., Yildiz, B., MRS Commun. 2 (01), 23 (2011).CrossRefGoogle Scholar
Ohmoto, A., Hwang, H.Y., Nature 427 ( 6973), 423 (2004).Google Scholar
Reyren, N., Caviglia, A.D., Kourkoutis, L.F., Hammerl, G., Richter, C., Schneider, C.W., Kopp, T., Ruetschi, A.-S., Jaccard, D., Gabay, M., Mueller, D.A., Triscone, J.-M., Mannhart, J., Science 317 (5842), 1196 (2007).Google Scholar
Evans, A., Bieberle-Hutter, A., Rupp, J.L.M., Gauckler, L.J., J. Power Sources 194 (1), 119 (2009).CrossRefGoogle Scholar
Tolke, R., Bieberle-Hutter, A., Evans, A., Rupp, J.L.M, Gauckler, L.J., J. Eur. Ceram. Soc. 32 (12), 3229 (2012).CrossRefGoogle Scholar
Suntivich, J., Gasteiger, H.A., Yabuuchi, N., Nakanishi, H., Goodenough, J.B., Shao-Horn, Y., Nat. Chem. 3 (8), 647 (2011).CrossRefGoogle Scholar
Adler, S.B., Lane, J.A., Steele, B.C.H., J. Electrochem. Soc. 143, 3554 (1996).Google Scholar
Barsan, N., Koziej, D., Weimar, U., Sensor. Actuat. B-Chem. 121 (1), 18 (2007).Google Scholar
Waser, R., Aono, M., Nat. Mater. 6 (11), 833 (2007).CrossRefGoogle Scholar
Waser, R., Dittmann, R., Staikov, G., Szot, K., Adv. Mater. 21 (25–26), 2632 (2009).CrossRefGoogle Scholar
Zhang, J.X., He, Q., Trassin, M., Luo, W., Yi, D., Rossell, M.D., Yu, P., You, L., Wang, C.H., Kuo, C.Y., Phys. Rev. Lett. 107 (14), 147602 (2011).Google Scholar
Ko, K.T., Jung, M.H., He, Q., Lee, J.H., Woo, C.S., Chu, K., Seidel, J., Jeon, B.G., Oh, Y.S., Kim, K.H.et al., Nat. Commun. 2, 567 (2011).Google Scholar
He, Q., Chu, Y.H., Heron, J.T., Yang, S.Y., Liang, W.I., Kuo, C.Y., Lin, H.J., Yu, P., Liang, C.W., Zeches, R.J.et al., Nat. Commun. 2, 225 (2011).CrossRefGoogle Scholar
Ramesh, R., Spaldin, N.A., Nat. Mater. 6 (1), 21 (2007).Google Scholar
Kuru, Y., Marrocchelli, D., Bishop, S.R., Chen, D., Yildiz, B., Tuller, H.L., J. Electrochem. Soc. 159 (11), F799 (2012).CrossRefGoogle Scholar
Ding, Y., Haskel, D., Tseng, Y.C., Kaneshita, E., van Veenendaal, M., Mitchell, J.F., Sinogeikin, S.V., Prakapenka, V., Mao, H.K., Phys. Rev. Lett. 102 (23), 237201 (2009).Google Scholar
Rata, A.D., Herklotz, A., Nenkov, K., Schultz, L., Dorr, K., Phys. Rev. Lett. 100 (7), 076401 (2008).CrossRefGoogle Scholar
Goodenough, J.B., Zhou, J.S., Chem. Mater. 10 (10), 2980 (1998).CrossRefGoogle Scholar
Haverkort, M., Hu, Z., Cezar, J., Burnus, T., Hartmann, H., Reuther, M., Zobel, C., Lorenz, T., Tanaka, A., Brookes, N., Phys. Rev. Lett. 97 (17), 247208 (2006).CrossRefGoogle Scholar
Fuchs, D., Arac, E., Pinta, C., Schuppler, S., Schneider, R., Löhneysen, H. v., Phys. Rev. B 77 (1), 014434 (2008).CrossRefGoogle Scholar
Lee, W., Han, J.W., Chen, Y., Cai, Z., Yildiz, B., J. Am. Chem. Soc. 135 (21), 7909 (2013).Google Scholar
Kubicek, M.L., Fromling, T., Hutter, H., Fleig, J., J. Electrochem. Soc. 158 (6), B727 (2011).Google Scholar
Chueh, W.C., Haile, S.M., Annu. Rev. Chem. Biomol. 3, 313 (2012).Google Scholar
Jung, W., Tuller, H.L., Adv. Energy Mater. 1 (6), 1184 (2011).CrossRefGoogle Scholar
Deskins, N.A., Rousseau, R., Dupuis, M., J. Phys. Chem. C 114, 5891 (2010).CrossRefGoogle Scholar
Lee, Y.-L., Kleis, J., Rossmeisl, J., Shao-Horn, Y., Morgan, D., Energy Environ. Sci. 4 (10), 3966 (2011).Google Scholar
Suntivich, J., May, K.J., Gasteiger, H.A., Goodenough, J.B., Shao-Horn, Y., Science 334 (6061), 1383 (2011).Google Scholar
Chroneos, A., Yildiz, B., Tarancón, A., Parfitt, D., Kilner, J.A., Energy Environ. Sci. 4 (8), 2774 (2011).CrossRefGoogle Scholar
Habib, M.A., Nemitallah, M., Ben-Mansour, R., Energ. Fuel. 27 (1), 2 (2013).CrossRefGoogle Scholar
Sugawara, Y., Ogawa, K., Goto, H., Oikawa, S., Akaike, K., Komura, N., Eguchi, R., Kaji, K., Gohda, S., Kubozono, Y., Sensor Actuat. B-Chem. 171, 544 (2012).Google Scholar
Si, R., Raitano, J., Yi, N., Zhang, L.H., Chan, S.W., Flytzani-Stephanopoulos, M., Catal. Today 180 (1), 68 (2012).Google Scholar
Zhou, Z., Kooi, S., Flytzani-Stephanopoulos, M., Saltsburg, H., Adv. Funct Mater. 18 (18), 2801 (2008).Google Scholar
Yi, N., Si, R., Saltsburg, H., Flytzani-Stephanopoulos, M., Energy Environ. Sci. 3 (6), 831 (2010).Google Scholar
Kharton, V.V., Marques, F.M.B., Atkinson, A., Solid State Ionics 174 (1–4), 135 (2004).Google Scholar
Garcia-Barriocanal, J., Rivera-Calzada, A., Varela, M., Sefrioui, Z., Iborra, E., Leon, C., Pennycook, S.J., Santamaria, J., Science 321 (5889), 676 (2008).CrossRefGoogle Scholar
Kilner, J.A., Nat. Mater. 7 (11), 838 (2008).Google Scholar
Cavallaro, A., Burriel, M., Roqueta, J., Apostolidis, A., Bernardi, A., Tarancon, A., Srinivasan, R., Cook, S.N., Fraser, H.L., Kilner, J.A., Solid State Ionics 181 (13–14), 592 (2010).Google Scholar
Guo, X., Science 324 (5926), 465 (2009).Google Scholar
De Souza, R.A., Ramadan, A.H.H., Phys. Chem. Chem. Phys. 15 (13), 4505 (2013).CrossRefGoogle Scholar
Rupp, J.L.M., Solid State Ionics 207, 1 (2012).CrossRefGoogle Scholar
Korte, C., Peters, A., Janek, J., Hesse, D., Zakharov, N., Phys. Chem. Chem. Phys. 10 (31), 4623 (2008).Google Scholar
Sillassen, M., Eklund, P., Pryds, N., Johnson, E., Helmersson, U., Bottiger, J., Adv. Funct. Mater. 20 (13), 2071 (2010).CrossRefGoogle Scholar
Sanna, S., Esposito, V., Tebano, A., Licoccia, S., Traversa, E., Balestrino, G., Small 6 (17), 1863 (2010).Google Scholar
Kant, K.M., Esposito, V., Pryds, N., Appl. Phys. Lett. 100 (3), 033105 (2012).CrossRefGoogle Scholar
Pergolesi, D., Fabbri, E., Cook, S.N., Roddatis, V., Traversa, E., Kilner, J.A., ACS Nano 6 (12), 10524 (2012).CrossRefGoogle Scholar
Li, B., Zhang, J.M., Kaspar, T., Shutthanandan, V., Ewing, R.C., Lian, J., Phys. Chem. Chem. Phys. 15 (4), 1296 (2013).Google Scholar
Aydin, H., Korte, C., Rohnke, M., Janek, J., Phys. Chem. Chem. Phys. 15 (6), 1944 (2013).Google Scholar
Rupp, J., Fabbri, E., Marrocchelli, D., Han, J.-W., Chen, D., Traversa, E., Tuller, H.L., Yildiz, B., Adv. Funct. Mater. (2013), doi: 10.1002/adfm.201302117.Google Scholar
Kosacki, I., Rouleau, C.M., Becher, P.F., Bentley, J., Lowndes, D.H., Solid State Ionics 176 (13–14), 1319 (2005).Google Scholar
Jiang, J., Hu, X., Shen, W., Ni, C., Hertz, J.L., Appl. Phys. Lett. 102 (14), 143901 (2013).CrossRefGoogle Scholar
Kushima, A., Yildiz, B., J. Mater. Chem. 20 (23), 4809 (2010).CrossRefGoogle Scholar
De Souza, R.A., Ramadan, A., Horner, S., Energy Environ. Sci. 5 (1), 5445 (2012).Google Scholar
Cheah, W.L., Finnis, M.W., J. Mater. Sci. 47 (4), 1631 (2012).Google Scholar
Johnson, C.L., Snoeck, E., Ezcurdia, M., Rodríguez-González, B., Pastoriza-Santos, I., Liz-Marzán, L.M., Hÿtch, M.J., Nat. Mater. 7 (2), 120 (2007).CrossRefGoogle Scholar
Béché, A., Rouvière, J.L., Barnes, J.P., Cooper, D., Ultramicroscopy 131, 10 (2013).CrossRefGoogle Scholar
Smolyanitsky, A., Tewary, V.K., Nanotechnology 22 (8), 085703 (2011).CrossRefGoogle Scholar
Nilekar, A.U., Greeley, J., Mavrikakis, M., Angew. Chem. Int. Ed. Engl. 45 (42), 7046 (2006).Google Scholar
Schichtel, N., Korte, C., Hesseb, D., Janeka, J., Phys. Chem. Chem. Phys. 11, 3043 (2009).CrossRefGoogle Scholar
Xu, Y., Ruban, A.V., Mavrikakis, M., J. Am. Chem. Soc. 126 (14), 4717 (2004).Google Scholar
Kuklja, M.M., Kotomin, E.A., Merkle, R., Mastrikov, Y.A., Maier, J., Phys. Chem. Chem. Phys. 15 (15), 5443 (2013).Google Scholar
Diebold, U., Surf. Sci. Rep. 48 (5–8), 53 (2003).Google Scholar
Kushima, A., Yip, S., Yildiz, B., Phys. Rev. B 82 (11), 115435 (2010).CrossRefGoogle Scholar
Cai, Z., Kuru, Y., Han, J.W., Chen, Y., Yildiz, B., J. Am. Chem. Soc. 133 (44), 17696 (2011).Google Scholar
Jalili, H., Han, J.W., Kuru, Y., Cai, Z.H., Yildiz, B., J. Phys. Chem Lett. 2 (7), 801 (2011).Google Scholar
Kubicek, M., Cai, Z.H., Ma, W., Yildiz, B., Hutter, H., Fleig, J., ACS Nano 7 (4), 3276 (2013).Google Scholar
Hong, W.T., Gadre, M., Lee, Y.L., Biegalski, M.D., Christen, H.M., Morgan, D., Shao-Horn, Y., J. Phys. Chem Lett. 4 (15), 2493 (2013).CrossRefGoogle Scholar
Pavone, M., Ritzmann, A.M., Carter, E.A., Energy Environ. Sci. 4 (12), 4933 (2011).Google Scholar
Mogensen, M., Lybye, D., Bonanos, N., Hendriksen, P.V., Poulsen, F.W., Elec. Soc. S2001 (28), 15 (2002).Google Scholar
Motta, A.T., Jom-Us 63 (8), 63 (2011).Google Scholar
Was, G.S., Farkas, D., Robertson, I.M., Curr. Opin. Solid. St. M. 16 (3), 134 (2012).Google Scholar
Sayle, T.X.T., Cantoni, M., Bhatta, U.M., Parker, S.C., Hall, S.R., Mobus, G., Molinari, M., Reid, D., Seal, S., Sayle, D.C., Chem. Mater. 24 (10), 1811 (2012).Google Scholar
Cha, S.I., Hwang, K.H., Kim, Y.H., Yun, M.J., Seo, S.H., Shin, Y.J., Moon, J.H., Lee, D.Y., Nanoscale 5 (2), 753 (2013).Google Scholar
Zhu, T., Li, J., Samanta, A., Leach, A., Gall, K., Phys. Rev. Lett. 100 (2), 025502 (2008).CrossRefGoogle Scholar
Rodney, D., Proville, L., Phys. Rev. B 79 (9), 094108 (2009).Google Scholar
Fan, Y., Osetsky, Y.N., Yip, S., Yildiz, B., Phys. Rev. Lett. 109 (13), 135503 (2012).Google Scholar
Fan, Y., Osetsky, Y., Yip, S., Yildiz, B., Proc. Natl. Acad. Sci. U.S.A. 2013, in print.Google Scholar
Dorr, K., Bilani-Zeneli, O., Herklotz, A., Rata, A.D., Boldyreva, K., Kim, J.W., Dekker, M.C., Nenkov, K., Schultz, L., Reibold, M., Eur. Phys. J. B 71 (3), 361 (2009).Google Scholar