Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T13:24:23.750Z Has data issue: false hasContentIssue false

Surface Defects and Passivation of Ge and III–V Interfaces

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The need for high-κ gate dielectrics and metal gates in advanced integrated circuits has reopened the door to Ge and III–V compounds as potential replacements for silicon channels, offering the possibility to further increase the performances of complementary metal oxide semiconductor (CMOS) circuits, as well as adding new functionalities. Yet, a fundamental issue related to high-mobility channels in CMOS circuits is the electrical passivation of their interfaces (i.e., achieving a low density of interface defects) approaching state-of-the-art Si-based devices. Here we discuss promising approaches for the passivation of Ge and III–V compounds and highlight insights obtained by combining experimental characterization techniques with first-principles simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Poindexter, E., Caplan, P., Deal, B., Razouk, R., J. Appl. Phys. 52, 879 (1981).Google Scholar
2Stesmans, A., Afanas'ev, V.V., J. Vac. Sci. Technol. B16, 3108 (1998).CrossRefGoogle Scholar
3Wilmsen, C.W., Ed., Physics and Chemistry of III–V Compound Semiconductor Interfaces (Plenum Press, New York, 1985).CrossRefGoogle Scholar
4Afanas'ev, V.V., Fedorenko, Y.G., Stesmans, A., Appl. Phys. Lett. 87, 032107 (2005).Google Scholar
5Claeys, C., Simoen, E., Eds., Germanium Based Technologies: From Materials to Devices (Elsevier, Oxford, 2007).Google Scholar
6Dimoulas, A., Gusev, E., McIntyre, P.C., Heyns, M., Eds., Advanced Gate Stacks for High-Mobility Semiconductors (Springer, New York, 2007).Google Scholar
7Passlack, M., Heyns, M., Thayne, I., Compd. Semicond. 21 (May 2008).Google Scholar
8Spicer, W.E., Lindau, I., Skeath, P., Su, C.Y., Chye, P., Phys. Rev. Lett. 44, 420 (1980).CrossRefGoogle Scholar
9Wu, N., Zhang, Q., Zhu, C., Chan, D.S., Li, M.F., Balasubramanian, N., Chin, A., Kwong, D.L., Appl. Phys. Lett. 85, 4127 (2004).Google Scholar
10Zimmerman, P., De Jaeger, D., Kaczer, B., Stesmans, A., Ragnarsson, L.-Å., Brunco, D., Leys, F., Caymax, M., Winderickx, G., Opsomer, K., Meuris, M., Heyns, M.M., IEDM Tech. Dig. (IEEE Piscataway) 655 (2006).Google Scholar
11Sugawara, T., Oshima, Y., Sreenivasan, R., McIntyre, P.C., Appl. Phys. Lett. 90, 112912 (2007).Google Scholar
12Takagi, S., Maeda, T., Taoka, N., Nishizawa, M., Morita, Y., Ikeda, K., Yamashita, Y., Nishikawa, M., Kumagai, H., Nakane, R., Sugahara, S., Sugiyama, N., Microelectron. Eng. 84, 2314 (2007).CrossRefGoogle Scholar
13Delabie, A., Bellenger, F., Houssa, M., Conard, T., Van Elshocht, S., Caymax, M., Heyns, M., Meuris, M., Appl. Phys. Lett. 91, 082904 (2007).Google Scholar
14Whang, S.J., Lee, S.J., Gao, F., Wu, N., Zhu, C.X., Pan, J.S., Tang, L.J., Kwong, D.L., IEDM Tech. Dig. (IEEE Piscataway) 307 (2004).Google Scholar
15Houssa, M., Nelis, D., Hellin, D., Pourtois, G., Conard, T., Paredis, K., Vanormelingen, K., Van Bael, M.K., Mullens, J., Vantomme, A.Caymax, M., Meuris, M., Heyns, M.M., Appl. Phys. Lett. 90, 222105 (2007).CrossRefGoogle Scholar
16Takahashi, T., Nishimura, T., Chen, L., Sakata, S., Kita, K., Toriumi, A., IEDM Tech. Dig. (IEEE Piscataway) 697 (2007).Google Scholar
17Chui, C.O., Kim, H., Chi, D., Triplett, B.B., McIntyre, P.C., Saraswat, K.C., IEDM Tech. Dig. (IEEE, Piscataway) 437 (2002).Google Scholar
18Kim, H., Chui, C.O., Saraswat, K., McIntyre, P.C., Appl. Phys. Lett. 83, 2647 (2003).CrossRefGoogle Scholar
19Shang, H., Okorn-Schmidt, H., Ott, J., Kozlowski, P., Steen, S., Jones, E.C., Wong, H.S., Hanesch, W., IEEE Electron Device Lett. 24, 242 (2003).Google Scholar
20Ritenour, A., Yu, S., Lee, M.L., Lu, N., Bai, W., Pitera, A., Fitzgerald, E.A., Kwong, D.L., Antoniadis, D., IEDM Tech. Dig. (IEEE Piscataway) 433 (2003).Google Scholar
21Preisler, E.J., Guha, S., Perkins, B.R., Kazazis, D., Zaslavsky, A., Appl. Phys. Lett. 86, 223504 (2005).CrossRefGoogle Scholar
22Caymax, M., Van Elshocht, S., Houssa, M., Dimoulas, A., Delabie, A., Conard, T., Meuris, M., Heyns, M.M., Spiga, S., Fanciulli, M., Seo, J.W., Gonchavora, L.V., Mat. Sci. Eng. B 135, 256 (2006).CrossRefGoogle Scholar
23Houssa, M., Satta, A., Simoen, E., De Jaeger, B., Caymax, M., Meuris, M., Heyns, M.M., in Germanium Based Technologies: From Materials to Devices, Claeys, C., Simoen, E., Eds. (Elsevier, Oxford, 2007).Google Scholar
24Houssa, M., Pourtois, G., Caymax, M., Meuris, M., Heyns, M.M., Surf. Sci. 602, L25 (2008).Google Scholar
25Grassman, T.J., Bishop, S.R., Kummel, A.C., Microelectron. Eng. 86, 249 (2009).Google Scholar
26Chagarov, E.A., Kummel, A.C., J. Chem. Phys. 130, 124717 (2009).Google Scholar
27Dimoulas, A., Mavrou, G., Vellianitis, G., Evangelou, E., Bukos, N., Houssa, M., Caymax, M., Appl. Phys. Lett. 86, 032908 (2005).Google Scholar
28Brunco, D.P., De Jaeger, B., Eneman, G., Mitard, J., Hellings, G., Satta, A., Terzieva, V., Souriau, L., Leys, F.E., Pourtois, G., Houssa, M., Winderickx, G., Vranken, E., Sioncke, S., Opsomer, K., Nicholas, G., Caymax, M., Stesmans, A., Van Steenbergen, J., Meuris, M., Heyns, M.M., J. Electrochem. Soc. 155, H552 (2008).CrossRefGoogle Scholar
29Leys, F.E., Bonzom, R., Kaczer, B., Janssens, T., Vandervorst, W., De Jaeger, B., Van Steenbergen, J., Martens, K., Hellin, D., Rip, J., Dilliway, G., Delabie, A., Zimmerman, P., Houssa, M., Theuwis, A., Loo, R., Meuris, M., Caymax, M., Heyns, M.M., Mater. Sci. Semicond. Process. 9, 679 (2006).Google Scholar
30Mitard, J., De Jaeger, B., Leys, F., Hellings, G., Martens, K., Eneman, G., Brunco, D.P., Loo, R., Lin, J.C., Shamiryan, D., Vandeweyer, T., Winderickx, G., Vranken, E., Yu, C.H., De Meyer, K., Caymax, M., Pantisano, L., Meuris, M., Heyns, M.M., IEDM Tech. Dig. (IEEE Piscataway) (2008).Google Scholar
31Pourtois, G., Houssa, M., De Jaeger, B., Kaczer, B., Leys, F., Meuris, M., Caymax, M., Groeseneken, G., Heyns, M.M., Appl. Phys. Lett. 91, 023506 (2007).Google Scholar
32Houssa, M., Pourtois, G., Kaczer, B., De Jaeger, B., Leys, F.E., Nelis, D., Paredis, K., Vantomme, A., Caymax, M., Meuris, M., Heyns, M.M., Microelectron. Eng. 84, 2267 (2007).CrossRefGoogle Scholar
33Prabhakaran, K., Maeda, F., Watanabe, Y., Ogino, T., Appl. Phys. Lett. 76, 2244 (2000).Google Scholar
34Molle, A., Bhuiyan, M.N.K., Tallarida, G., Fanciulli, M., Appl. Phys. Lett. 89, 083504 (2006).Google Scholar
35Bellenger, F., Houssa, M., Delabie, A., Afanas'ev, V.V., Conard, T., Caymax, M., Meuris, M., De Meyer, K., Heyns, M.M., J. Electrochem. Soc. 155, G33 (2008).Google Scholar
36Batude, P., Garros, X., Clavelier, L., Le Royer, C., Hartmann, J.M., Loup, V., Besson, P., Vandroux, L., Campidelli, Y., Deleonibus, S., Boulanger, F., J. Appl. Phys. 102, 034514 (2007).CrossRefGoogle Scholar
37Pourtois, G., Houssa, M., Delabie, A., Conard, T., Caymax, M., Meuris, M., Heyns, M.M., Appl. Phys. Lett. 92, 032105 (2008).Google Scholar
38Bachelet, G.B., Christensen, N.E., Phys. Rev. B 31, 879 (1985).CrossRefGoogle Scholar
39Christensen, N.E., Phys. Rev. B 30, 5753 (1984).Google Scholar
40Mavrou, G., Galata, S., Tsipas, P., Sotiropoulos, A., Panayiotatos, Y., Dimoulas, A., Evangelou, E.K., Seo, J.W., Dieker, Ch., J. Appl. Phys. 103, 014506 (2008).Google Scholar
41Brunco, D.P., Dimoulas, A., Boukos, N., Houssa, M., Conard, T., Martens, K., Zhao, C., Bellenger, F., Caymax, M., Meuris, M., Heyns, M.M., J. Appl. Phys. 102, 024104 (2007).Google Scholar
42Renault, O., Fourdrinier, L., Martinez, E., Clavelier, L., Leroyer, C., Barrett, N., Crotti, C., Appl. Phys. Lett. 90, 052112 (2007).Google Scholar
43Houssa, M., Pourtois, G., Caymax, M., Meuris, M., Heyns, M.M., Appl. Phys. Lett. 92, 242101 (2008).Google Scholar
44Nicholas, G., Brunco, D.P., Dimoulas, A., Van Steenbergen, J., Bellenger, F., Houssa, M., Caymax, M., Meuris, M., Panayiotatos, Y., Sotiropoulos, A., IEEE Trans. Electron Devices 54, 1425 (2007).CrossRefGoogle Scholar
45Dimoulas, A., “Ge p-channel MOSFETs with rare earth gate dielectrics” presented at the E-MRS Spring Meeting, Strasbourg, France, 2008.Google Scholar
46Aguirre-Tostado, F.S., Milojevic, M., Lee, B., Kim, J., Wallace, R.M., Appl. Phys. Lett. 93, 172907 (2008).CrossRefGoogle Scholar
47Milojevic, M., Aguirre-Tostado, F.S., Hinkle, C.L., Kim, H.C., Vogel, E.M., Kim, J., Wallace, R.M., Appl. Phys. Lett. 93, 202902 (2008).CrossRefGoogle Scholar
48Milojevic, M., Hinkle, C.L., Aguirre-Tostado, F.S., Kim, H.C., Vogel, E.M., Kim, J., Wallace, R.M., Appl. Phys. Lett. 93, 252905 (2008).CrossRefGoogle Scholar
49Shahrjerdi, D., Garcia-Gutierrez, D.I., Tutuc, E., Banerjee, S.K., Appl. Phys. Lett. 92, 223501 (2008).Google Scholar
50Xuan, Y., Shen, T., Xu, M., Wu, Y.Q., Ye, P.D., IEDM Tech. Dig. (IEEE Piscataway) 371 (2008).Google Scholar
51Xuan, Y., Wu, Y.Q., Ye, P.D., IEEE Electron Device Lett. 29, 294 (2008).CrossRefGoogle Scholar
52Kim, E., Saraswat, K.C., McIntyre, P.C., “Atomic Layer Deposition of Al2O3 on As-Decapped In0.53Ga0.47As,” (MRS, San Francisco, 2008), H7.6.Google Scholar
53McIntyre, P.C., Oshima, Y., Kim, E., Chagarov, E., Cagnon, J., Saraswat, K.C., Stemmer, S., Kummel, A.C., “Interface Studies of Metal Oxide Gate Insulators on Ge and III–V Substrate” presented at the Semiconductor Interface Specialists Conference, IEEE, San Diego, 2008.Google Scholar
54Cheng, C.-W., Fitzgerald, E.A., Appl. Phys. Lett. 93, 031902 (2008).CrossRefGoogle Scholar
55Lu, H.-L., Li, Y.-B., Xu, M., Ding, S.-J., Sun, L., Zhang, W., Wang, L.-K., Chin. Phys. Lett. 23, 1929 (2006).Google Scholar
56Chagarov, E.A., Kummel, A.C., Surf. Sci. 602, L74 (2008).CrossRefGoogle Scholar
57Chagarov, E.A., Kummel, A.C., “Density-functional theory molecular dynamics simulations of atomic scale intermixing at the amorphous Al2O3/semiconductor interfaces” presented at the Semiconductor Interface Specialists Conference, IEEE, San Diego, 2008.Google Scholar
58Chagarov, E.A., Kummel, A.C., ECS Trans. 16, 773 (2008).Google Scholar
59Passlack, M., Hong, M., Mannaerts, J.P., Appl. Phys. Lett. 68, 1099 (1996).Google Scholar
60Passlack, M., Hunt, N.E.J., Schubert, E.F., Zydzik, G.J., Hong, M., Mannaerts, J.P., Opila, R.L., Fischer, R.J., Appl. Phys. Lett. 64, 2715 (1994).Google Scholar
61Droopad, R., Passlack, M., England, N., Rajagopalan, K., Abrokwah, J., Kummel, A.C., Micro. Eng. 80, 138 (2008).Google Scholar
62Droopad, R., Rajagopalan, K., Abrokwah, J., Adams, L., England, N., Uebelhoer, D., Fejes, P., Zurcher, P., Passlack, M., J. Cryst. Growth 301, 199 (2007).Google Scholar
63Passlack, M., Droopad, R., Fejes, P., Wang, L., IEEE Electron Device Lett. 30, 2 (2009).Google Scholar
64Passlack, M., Droopad, R., Yu, Z., Medendorp, N., Braddock, D., Wang, X.W., Ma, T.P., Büyüklimanli, T., IEEE Electron Device Lett. 29, 1181 (2008).Google Scholar
65Hill, R.J.W., Moran, D.A.J., Li, X., Zhou, H., Macintyre, D., Thoms, S., Asenov, A., Zurcher, P., Rajagopalan, K., Abrokwah, J., Droopad, R., Passlack, M., Thayne, I.G., IEEE Electron Device Lett. 28, 1080 (2007).Google Scholar
66Lin, T.D., Chiu, H.C., Chang, P., Tung, L.T., Chen, C.P., Hong, M., Kwo, J., Tsai, W., Wang, Y.C., Appl. Phys. Lett. 93, 033516 (2008).Google Scholar
67Hale, M.J., Yi, S.I., Sexton, J.Z., Kummel, A.C., Passlack, M., J. Chem. Phys. 119, 6719 (2003).Google Scholar
68Winn, D.L., Hale, M.J., Grassman, T.J., Sexton, J.Z., Kummel, A.C., J. Chem. Phys. 127, 134705 (2007).Google Scholar
69Passlack, M., Droopad, R., Thayne, I., Asenov, A., Solid State Technol. Mag. 26 (December 2008).Google Scholar
70Hill, R.J.W., Droopad, R., Moran, D.A.J., Li, X., Zhou, H., Macintyre, D., Thoms, S., Ignatova, I., Asenov, A., Rajagopalan, K., Fejes, P., Thayne, I.G., Passlack, M., Electron. Lett. 44, 498 (2008).Google Scholar
71Hill, R.J.W., Droopad, R., Moran, D.A.J., Li, X., Zhou, H., Macintyre, D., Thoms, S., Ignatova, O.A., Rajagopalan, A.K., Fejes, P., Thayne, I.G., Passlack, M., Electron. Lett. 44, 1283 (2008).CrossRefGoogle Scholar
72Shen, J., Winn, D.L., Clemens, J.B., Song, T., Melitz, W., Kummel, A.C., “Materials Science of High-κ Dielectric Stacks—From Fundamentals to Technology,” Gusev, E., Ed. (MRS, San Francisco, 2008), H7.7.Google Scholar
73Tiwari, S., Wright, S.L., Batey, J., IEEE Electron Device Lett. 9, 499 (1988).Google Scholar
74Fountain, G.G., Hattangady, S.V., Vitkavage, D.J., Rudder, R.A., Markunas, R.J., Electron. Lett. 24, 1134 (1988).Google Scholar
75Kambhampatia, R., Koveshnikova, S., Tokranova, V., Yakimova, M., Moorea, R., Tsai, W., Oktyabrskya, S., ECS Trans. 11, 431 (2007).Google Scholar
76Oktyabrsky, S., Koveshnikov, S., Tokranov, V., Yakimov, M., Kambhampati, R., Bakhru, H., Zhu, F., Lee, J., Tsai, W., in Device Research Conference 65, 203 (2006).Google Scholar
77Koveshnikov, S., Goel, N., Majhi, P., Wen, H., Santos, M.B., Oktyabrsky, S., Tokranov, V., Kambhampati, R., Moore, R., Zhu, F., Lee, J., Tsai, W., Appl. Phys. Lett. 92, 222904 (2008).Google Scholar
78Dimoulas, A., Tsipas, P., Sotiropoulos, A., Evangelou, E.K., Appl. Phys. Lett. 89, 252110 (2006).Google Scholar
79Shin, B., Choi, D., Harris, J.S., McIntyre, P.C., Appl. Phys. Lett. 93, 052911 (2008).CrossRefGoogle Scholar
80Thomas, K.K., Chalvet, F., Povey, I.M., Pemble, M.E., Hurley, P.K.Appl. Phys. Lett. 92, 022902 (2008).Google Scholar
81Hwang, Y., Wistey, M.A., Cagnon, J., Engel-Herbert, R., Stemmer, S.Appl. Phys. Lett. 94, 122907 (2009).Google Scholar