Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T06:58:25.221Z Has data issue: false hasContentIssue false

Tribological Investigations Using Friction Force Microscopy

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Many attempts have been made in recent centuries to investigate friction, adhesion, lubrication, and wear. Most of the experimental approaches and theories were based on macroscopic experiments, such as tensile and indentation tests. For a long time, only the bulk properties of the materials were considered.

Late in this century a new term was created combining all of the above-mentioned properties which deal with the science of interacting material interfaces in relative motion: tribology. The state of the art of science today reveals that processing in nature depends strongly on interfaces that cannot be described only by bulk properties. Tribologists realize they must study the sliding surfaces by analytical surface-science tools. With the surface force apparatus developed by J.N. Israelachvili and D. Tabor, we have a surface analysis tool that provides new insight into the field of macroscopic sliding contact of lubricated systems.

After Amontons' laws were established as a first attempt to describe sliding friction analytically, theories were advanced over the course of this century. A classic discipline was developed: contact mechanics. More quantitative treatments of friction were developed by various authors. The energy dissipation in most processes in tribology induced the theorists to consider the sliding bodies as spring models creating phonon-phonon interactions. And with modern computer facilities, they started to perform computational experiments whenever classical experiments could not provide information on the submicron scale.

Type
Nanotribology
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Binnig, G., Quate, C.F., and Gerber, C., Phys. Rev. Lett. 56 (1986) p. 930.CrossRefGoogle Scholar
2. For recent reviews of scanning force microscopies, see: Meyer, E. and Heinzelmann, H., Scanning Tunneling Microscopy and Related Methods, edited by Behm, R.J. (Kluwer, Dordrecht, 1990) p. 443; J. Frommer and E. Meyer, J. Phys. Cond. Matt. 3 (1991) p. S1; Ultramicroscopy 42–4 (entire volumes devoted to scanning tunneling microscopy and scanning force microscopies) (1992); W. Heckl, Thin Solid Films 210–211 (1992) p. 640; and J. Frommer, Angewandte Chemie, Int. Ed. Engl. 31 (1992) p. 1298.Google Scholar
3.Binnig, G. and Rohrer, H., Helv. Phys. Acta 55 (1982) p. 726; and G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49 (1982) p. 57.Google Scholar
4.Mate, C.M., McClelland, G.M., Erlandsson, R., and Chiang, S., Phys. Rev. Lett. 59 (1987) p. 1942.CrossRefGoogle Scholar
5.Meyer, G. and Amer, N.M., Appl. Phys. Lett. 57 (1990) p. 2089.CrossRefGoogle Scholar
6.Marti, O., Colchero, J., and Mlynek, J., Nanotechnol. 1 (1990) p. 141.CrossRefGoogle Scholar
7.Erlandsson, R., McClelland, G.M., Mate, C.M., and Chiang, S., J. Vac. Sci. Technol. A. 6 (1988) p. 266.CrossRefGoogle Scholar
8.Neubauer, G., Cohen, S.R., McClelland, G.M., Home, D., and Mate, C.M., Rev. Sci. Iustrum. 61 (1990) p. 2296.CrossRefGoogle Scholar
9.McClelland, G.M., Adhesion and Friction, edited by Grunze, M. and Kreuzer, H.J. (Kluwer, Amsterdam, 1992) p. 81.Google Scholar
10.Meyer, G. and Amer, N.M., Appl. Phys. Lett. 57 (1990) p. 2089.CrossRefGoogle Scholar
11.Marti, O., Colchero, J., and Mlynek, J., Nanotechnol. 1 (1990) p. 141.CrossRefGoogle Scholar
12.Overney, R.M. and Meyer, E. (private communication).Google Scholar
13.Overney, R.M., PhD thesis, University of Basel, 1992.Google Scholar
14. Park Scientific Instruments, 1171 Borregas Avenue, Sunnyvale, CA 94089.Google Scholar
15.Wolter, O., Bayer, T., and Grechner, J., J. Vac. Sci. Technol. B 9 (1991) p. 1353; O. Wolter, Institut für Mikrostrukturtechnik und Optoelektronik, Wetzler Blankenfeld/Germany.CrossRefGoogle Scholar
16.Petersen, K.E., “Silicon as a Mechanical Material,” Proc. IEEE 40 (1982) p. 420.CrossRefGoogle Scholar
17.Meyer, E., Overney, R., Lüthi, R., Brodbeck, D., Howald, L., Frommer, J., and Güntherodt, H-J., Thin Solid Films 220 (1992) p. 132.CrossRefGoogle Scholar
18.Howard, L., Meyer, E., Lüthi, R., Haefke, H., Overney, R., Rudin, H., and Güntherodt, H-J., submitted to Applied Phys. Lett. (1993).Google Scholar
19.Hsu, S.M., MRS Bulletin XVI (10) (1991) p. 54.CrossRefGoogle Scholar
20. For recent reviews of thin organic films, see: Ulman, A., An Introduction to Ultrathin Organic Films, From Langmuir-Blodgett to Self-Assembly (Academic Press, San Diego 1991); and J. Swalen, Annual Rev. Mater. Sci. 21 (1991) p. 373.Google Scholar
21.Overney, R.M., Meyer, E., Frommer, J., Güntherodt, H-J., Decher, G., Reibel, J., and Sohling, U., Langmuir 9 (1992) p. 341.CrossRefGoogle Scholar
22.Meyer, E., Howald, L., Overney, R., Heinzelmann, H., Frommer, J., Güntherodt, H-J., Wagner, T., Schier, H., and Roth, S., Nature 349 (1991) p. 398.CrossRefGoogle Scholar
23. Overney, R., Meyer, E., Frommer, J., Brodbeck, D., Lüthi, R., Howald, L., Güntherodt, H-J., Fujihira, M., Takano, H., and Gotoh, Y., Nature 359 (1992) p. 349; and E. Meyer, R. Overney, R. Lüthi, D. Brodbeck, L. Howald, J. Frommer, H-J. Guntherodt, O. Wolter, M. Fujihira, H. Takano, and Y. Gotoh, Thin Solid Films 220 (1992) p. 132.CrossRefGoogle Scholar
24.Bourdieu, L., Silberzan, P., and Chatenay, D., Phys. Rev. Lett. 6 (1991) p. 2029; and C. Alves, E. Smith, and M. Porter, J. Amer. Chem. Soc. 114 (1992) p. 1222.CrossRefGoogle Scholar
25.Fuchs, H., Chi, L., Eng, L., and Graf, K., Thin Solid Films 210–211 (1992) p. 655.CrossRefGoogle Scholar
26.Meyer, E., Howald, L., Overney, R., Heinzelmann, H., Frommer, J., Güntherodt, H.-J., Ultramicroscopy 42–44 (1992) p. 274.CrossRefGoogle Scholar
27.Meyer, E., Overney, R., Howald, L., Brodbeck, D., Lüthi, R., and Güntherodt, H-J., Fundamentals of Friction, edited by Singer, I. and Pollock, H. (Kluwer, Dordrecht, 1992) p. 427.Google Scholar
28.Sokoloff, J.B., Phys. Rev. B 42 (1990) p. 760.CrossRefGoogle Scholar
29.Briscoe, B.J. and Evans, D.C.B., Proc. R. Soc. London, Ser. A 380 (1982) p. 389.Google Scholar
30.Meyer, E., Overney, R., Brodbeck, D., Howald, L., Lüthi, R., Frommer, J., and Güntherodt, H-J., Phys. Rev. Lett. 69 (1992) p. 1777.CrossRefGoogle Scholar
31.Bowden, F.P. and Tabor, D., Friction and Lubrication of Solids, Part 1 (Clarendon Press, Oxford, 1954).Google Scholar
32.Israelachvili, J.N., Intermolecular and Surface Forces, 2nd ed. (Academic Press, London, 1991).Google Scholar
33.Schreck, M., Schmeisser, D., Göpel, W., Schier, H., Habermeier, H.U., Roth, S., and Dulog, L., Thin Solid Films 175 (1989) p. 95.CrossRefGoogle Scholar
34.Bailey, A.I. and Courtney-Pratt, J.S., Proc. R. Soc. London, Ser. A 227 (1955) p. 501.Google Scholar
35.Naselli, C., Swalen, J.D., and Rabolt, J.F., J. Chem. Phys. 90 (1989) p. 3855.CrossRefGoogle Scholar
36.Briscoe, B., Tabor, D., Interfacial Phenomena in Apolar Media, edited by Eicke, H-F., Parfitt, G.D. (Marcel Dekker, New York, 1987) p. 327.Google Scholar
37.Hardy, W.B., Proc. R. Soc. London, Ser. A 88 (1913) p. 313.Google Scholar
38.Rabinowitz, E., Tabor, D., Proc. R. Soc. London, Ser. A 208 (1951) p. 455.Google Scholar
39.Wadas, A. and Overney, R.M. (private communication).Google Scholar
40.Israelachvili, J.N. and Tabor, D., Proc. R. Soc. London, Ser. A 331 (1972) p. 19.Google Scholar
41.Dowson, D., History of Tribology (Longman, London, 1979).Google Scholar
42.Meyer, E., Overney, R., Lüthi, R., Brodbeck, D., Howard, L., Frommer, J., Güntherodt, H-J., Wolter, O., Fujihira, M., Takano, H., and Gotoh, Y., Thin Solid Films 220 (1992) p. 132.CrossRefGoogle Scholar
43.Overney, R., Meyer, E., Frommer, J., Brodbeck, D., Lüthi, R., Howard, L., Güntherodt, H-J., Fujihira, M., Takano, H., and Gotoh, Y., Nature 359 (1992) p. 349.CrossRefGoogle Scholar