Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T14:57:56.690Z Has data issue: false hasContentIssue false

Design, fabrication, and characterization of polycaprolactone (PCL)-TiO2-collagenase nanofiber mesh scaffolds by Forcespinning

Published online by Cambridge University Press:  07 February 2019

K. del Ángel-Sánchez*
Affiliation:
Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Avenida Eugenio Garza Sada #2501 Sur, Monterrey, Nuevo León 64849, México
N.A. Ulloa-Castillo
Affiliation:
Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Avenida Eugenio Garza Sada #2501 Sur, Monterrey, Nuevo León 64849, México
Emmanuel Segura-Cárdenas
Affiliation:
Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Avenida Eugenio Garza Sada #2501 Sur, Monterrey, Nuevo León 64849, México
Oscar Martinez-Romero
Affiliation:
Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Avenida Eugenio Garza Sada #2501 Sur, Monterrey, Nuevo León 64849, México
Alex Elías-Zuñiga
Affiliation:
Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Avenida Eugenio Garza Sada #2501 Sur, Monterrey, Nuevo León 64849, México
*
Address all correspondence to K. del Ángel-Sánchez at kdelangel@tec.mx
Get access

Abstract

We report on the design of polycaprolactone (PCL)-TiO2-collagenase mesh scaffolds by Forcespinning technique. The dependence of the degree of crystallinity in PCL caused by the incorporation of dopants (TiO2-collagenase) and the reduction of dimensionality (1D), during the nanofiber formation, were investigated by x-ray diffraction and differential scanning calorimetry. The tensile strength of the mesh scaffolds (randomly oriented) was determined using uniaxial testing equipment. The permeability was measured by contact angle obtaining an improvement in the hydrophobicity for the PCL-TiO2-collagenase mesh scaffolds. The results reported in this research are of great relevance for tissue engineering applications.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Stratton, S., Shelke, N.B., Hoshino, K., Rudraiah, S., and Kumbar, S.G.: Bioactive polymeric scaffolds for tissue engineering. Bioact. Mater. 1, 93 (2016).Google Scholar
2.Rambhia, K.J., and Ma, P.X..: Controlled drug release for tissue engineering. J. Control. Release 219, 119 (2015).Google Scholar
3.Jaiswal, A., and Jaiswal, A.: Nanofibrous scaffolds for tissue engineering applications. Brazilian Arch. Biol. Technol. 59, 1 (2016).Google Scholar
4.Chang, W.M., Wang, C.C., and Chen, C.Y.: The combination of electrospinning and forcespinning: effects on a viscoelastic jet and a single nanofiber. Chem. Eng. J. 244, 540 (2014).Google Scholar
5.Sarkar, K., Gómez, C., Zambrano, S., Ramírez, M., de Hoyos, E., Vásquez, H., and Lozano, K.: Electrospinning to Forcespinning™. Mater. Today 13, 12 (2010).Google Scholar
6.Hong, Y., Gao, C., Xie, Y., Gong, Y., and Shen, J.: Collagen-coated polylactide microspheres as chondrocyte microcarriers. Biomaterials 26, 6305 (2005).Google Scholar
7.Rwei, S.P., and Huang, C.C.: Electrospinning PVA solution-rheology and morphology analyses. Fibers Polym. 13, 44 (2012).Google Scholar
8.Yu, H., Jia, Y., Yao, C., and Lu, Y.: PCL/PEG core/sheath fibers with controlled drug release rate fabricated on the basis of a novel combined technique. Int. J. Pharm. 469, 17 (2014).Google Scholar
9.Caramella, C., Conti, B., Modena, T., Ferrari, F., Bonferoni, M.C., Genta, I., Rossi, S., Torre, M.L., Sandri, G., Sorrenti, M., Catenacci, L., Dorati, R., and Tripodo, G.: Controlled delivery systems for tissue repair and regeneration. J. Drug Deliv. Sci. Technol. 32, 206 (2016).Google Scholar
10.Matthews, J.A., Wnek, G.E., Simpson, D.G., and Bowlin, G.L.: Electrospinning of collagen nanofibers. Biomacromolecules 3, 232 (2002).Google Scholar
11.Lu, Y., Li, Y., Zhang, S., Xu, G., Fu, K., Lee, H., and Zhang, X.: Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur. Polym. J. 49, 3834 (2013).Google Scholar
12.Ren, L., and Kotha, S.P.: Centrifugal jet spinning for highly efficient and large-scale fabrication of barium titanate nanofibers. Mater. Lett. 117, 153 (2014).Google Scholar
13.Zachary McEachin, K.L.: Production and characterization of Polycaprolactone Nanofibers via Forcespinning™ Technology. J. Appl. Polym. Sci. 126, 473 (2012).Google Scholar
14.Siqueira, I.A.W.B., de Moura, N.K., de Barros Machado, J.P., Backes, E.H., Roberto Passador, F., and de Sousa Trichês, E.: Porous membranes of the polycaprolactone (PCL) containing calcium silicate fibers for guided bone regeneration. Mater. Lett. 206, 210 (2017).Google Scholar
15.Tan, A.W., Pingguan-Murphy, B., Ahmad, R., and Akbar, S.A.: Review of Titania nanotubes: fabrication and cellular response. Ceram. Int. 38, 4421 (2012).Google Scholar
16.Haider, A.J., Al-Anbari, R.H., Kadhim, G.R., and Salame, C.T.: Exploring potential environmental applications of nanoparticles. Energy Procedia 119, 332 (2017).Google Scholar
17.Fierro-Arias, L., Campos-Cornejo, N.G., Contreras-Ruiz, J., Espinosa-Maceda, S., López-Gehrke, I., Márquez-Cárdenas, R., Ramírez-Padilla, M., Veras-Castillo, E., and Rodríguez-Alcocer, A.N.: Productos enzimáticos (hialuronidasa, colagenasa y lipasa) y su uso en dermatología. Dermatologia Rev. Mex. 61, 206 (2017).Google Scholar
18.Torra I Bou, J.E.: La colagenasa y el tejido desvitalizado. Rev. ROL Enf. 109, 109114 (2013).Google Scholar
19.Melmed, S., Polonsky, K.S., Reed Lorsen, P., and Kronenberg, H.M.: Williams Textbook of Endocrinology (Elsevier, Philadelphia, PA, 2016).Google Scholar
20.Del Ángel-Sánchez, K., Vázquez-Cuchillo, O., Salazar-Villanueva, M., Sánchez-Ramírez, J.F., Cruz-López, A., and Aguilar-Elguezabal, A.: Preparation, characterization and photocatalytic properties of nanostructured spheres synthesized by the Sol–Gel method modified with ethylene glycol. J. Sol-Gel Sci. Technol. 58, 360 (2011).Google Scholar
21.Van der Bogt, K.E.A., Sheikh, A.Y., Schrepfer, S., Hoyt, G., Cao, F., Ransohotf, K.J., Swijnenburg, R.J., Pearl, J., Lee, A., Fischbein, M., Contact, C.H., Robbins, R.C., and Wu, J.C.: Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation 118, 121 (2008).Google Scholar
22.Phipps, M.C., Clem, W.C., Grunda, J.M., Clines, G.A., and Bellis, S.L.: Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 33, 524 (2012).Google Scholar
23.Dziadek, M., Menaszek, E., Zagrajczuk, B., Pawlik, J., and Cholewa-Kowalska, K.: New generation poly(e-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Mater. Sci. Eng. C 56, 9 (2015).Google Scholar
24.Zhang, J., and Qiu, Z.: Morphology, crystallization behavior, and dynamic mechanical properties of biodegradable poly (ε-caprolactone)/thermally reduced graphene nanocomposites. Ind. Eng. Chem. Res. 50, 13885 (2011).Google Scholar
25.Ghosal, K., Thomas, S., Kalarikkal, N., and Gnanamanis, A.: Collagen coated electrospun polycaprolactone (PCL) with titanium dioxide (TiO2) from an environmentally benign solvent: Preliminary physico-chemical studies for skin substitute. J. Polym. Res. 21, 2 (2014).Google Scholar
26.West, P.A., Torzilli, P.A., Chen, C., Lin, P., and Camacho, N.P.: Fourier transform infrared imaging spectroscopy analysis of collagenase-induced cartilage degradation. J. Biomed. Opt. 10, 1 (2015).Google Scholar
27.Abdelrazek, E.M., Hezma, A.M., El-khodary, A., and Elzayat, A.M.: Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt. J. Basic Appl. Sci. 3, 10 (2016).Google Scholar
Supplementary material: File

del Ángel-Sánchez et al. supplementary material

del Ángel-Sánchez et al. supplementary material 1

Download del Ángel-Sánchez et al. supplementary material(File)
File 164.6 KB