Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T20:09:58.009Z Has data issue: false hasContentIssue false

Enhanced photovoltaic performance of tin sulfide nanoparticles by indium doping

Published online by Cambridge University Press:  07 November 2016

Farid Jamali-Sheini*
Affiliation:
Advanced Surface Engineering and Nano Materials Research Center, Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz 61349-37333, Iran
Mohsen Cheraghizade
Affiliation:
Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz 61349-37333, Iran
Farhad Niknia
Affiliation:
Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz 61349-37333, Iran
Ramin Yousefi
Affiliation:
Department of Physics, Masjed-Soleiman Branch, Islamic Azad University (I.A.U), Masjed-Soleiman 64915-111, Iran
*
Address all correspondence to Farid Jamali-Sheini at faridjamali@iauahvaz.ac.ir, faridjamali2003@yahoo.com
Get access

Abstract

In-doped tin (II) sulfide nanoparticles (NPs), synthesized by ultrasonication method and their optical and photovoltaic properties, have been investigated. FESEM images show NPs which have a flower-like morphology that sizes are <100 nm. Optical energy band gap estimation of tin sulfide NPs with the Tauc plot method had shown an increase with minimum of indium concentration and then decreases with higher concentration of indium. Photovoltaic experiment shows the highly photovoltaic efficiency of tin sulfide NPs with indium doping, can be obtained.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bella, F., Gerbaldi, C., Barolo, C., and Grätzel, M.: Aqueous dye-sensitized solar cells. Chem. Soc. Rev. 44, 3431 (2015).CrossRefGoogle ScholarPubMed
2. Li, H., Ji, J., Zheng, X., Ma, Y., Jin, Z., and Ji, H.: Preparation of SnS quantum dots for solar cells application by an in-situ solution chemical reaction process. Mater. Sci. Semicond. Process. 36, 65 (2015).CrossRefGoogle Scholar
3. Rath, J.K., Prastani, C., Nanu, D.E., Nanu, M., Schropp, R.E.I., Vetushka, A., Hývl, M., and Fejfar, A.: Fabrication of SnS quantum dots for solar-cell applications: issues of capping and doping. Phys. Status Solidi b 251, (2014).Google Scholar
4. Niknia, F., Jamali-Sheini, F., and Yousefi, R.: Photocurrent properties of undoped and Pb-doped SnS nanostructures grown using electrodeposition method. J. Electron. Mater. 44, 4734 (2015).CrossRefGoogle Scholar
5. Li, J., Zhang, Y., Wang, Y., Xue, C., Liang, J., Jiang, G., Liu, W., and Zhu, C.: Formation of Cu2ZnSnS4 thin film solar cell by CBD-annealing route: comparison of Cu and CuS in stacked layers SnS/Cu(S)/ZnS. Sol. Energy 129, 1 (2016).CrossRefGoogle Scholar
6. Sinsermsuksakul, P., Sun, L., Lee, S.W., Park, H.H., Kim, S.B., Yang, C., and Gordon, R.G.: Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 4, (2014).CrossRefGoogle Scholar
7. Li, J., Xue, C., Wang, Y., Jiang, G., Liu, W., and Zhu, C.: Cu2SnS3 solar cells fabricated by chemical bath deposition–annealing of SnS/Cu stacked layers. Sol. Energy Mater. Sol. Cells 144, 281 (2016).CrossRefGoogle Scholar
8. Tong, Z., Zhang, K., Sun, K., Yan, C., Liu, F., Jiang, L., Lai, Y., Hao, X., and Li, J.: Modification of absorber quality and Mo-back contact by a thin Bi intermediate layer for kesterite Cu2ZnSnS4 solar cells. Sol. Energy Mater. Sol. Cells 144, 537 (2016).CrossRefGoogle Scholar
9. Schneikart, A., Schimper, H.J., Klein, A., and Jaegermann, W.: Efficiency limitations of thermally evaporated thin-film SnS solar cells. J. Phys. D: Appl. Phys. 46, 305109 (2013).CrossRefGoogle Scholar
10. Chen, X., Hou, Y., Zhang, B., Yang, X.H., and Yang, H.G.: Low-cost SnSx counter electrodes for dye-sensitized solar cells. Chem. Commun. 49, 5793 (2013).CrossRefGoogle ScholarPubMed
11. Steinmann, V., Jaramillo, R., Hartman, K., Chakraborty, R., Brandt, R.E., Poindexter, J.R., Lee, Y.S., Sun, L., Polizzotti, A., Park, H.H., Gordon, R.G., and Buonassisi, T.: 3.88% efficient tin sulfide solar cells using congruent thermal evaporation. Adv. Mater. 26, 7488 (2014).CrossRefGoogle ScholarPubMed
12. Yue, G., Lin, Y., Wen, X., Wang, L., and Peng, D.: SnS homojunction nanowire-based solar cells. J. Mater. Chem. 22, 16437 (2012).CrossRefGoogle Scholar
13. Rath, T., Gury, L., Sánchez-Molina, I., Martínez, L., and Haque, S.A.: Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells. Chem. Commun. 51, 10198 (2015).CrossRefGoogle ScholarPubMed
14. Patel, M. and Ray, A.: Magnetron sputtered Cu doped SnS thin films for improved photoelectrochemical and heterojunction solar cells. RSC Adv. 4, 39343 (2014).CrossRefGoogle Scholar
15. Liu, X. and Bai, H.: Hydrothermal synthesis of visible light active zinc-doped tin disulfide photocatalyst for the reduction of aqueous Cr(VI). Powder Technol. 237, 610 (2013).CrossRefGoogle Scholar
16. Niknia, F., Jamali-Sheini, F., and Yousefi, R.: Examining the effect of Zn dopant on physical properties of nanostructured SnS thin film by using electrodeposition. J. Appl. Electrochem. 46, 323 (2015).CrossRefGoogle Scholar
17. Chaki, S.H., Chaudhary, M.D., and Deshpande, M.P.: Effect of indium and antimony doping in SnS single crystals. Mater. Res. Bull. 63, 173 (2015).CrossRefGoogle Scholar
18. Santhosh, K.K., Manoharan, C., Dhanapandian, S., Gowri Manohari, A., and Mahalingam, T.: Effect of indium incorporation on properties of SnS thin films prepared by spray pyrolysis. Optik—Int. J. Light Electron Opt. 125, 3996 (2014).CrossRefGoogle Scholar
19. Reghima, M., Akkari, A., Guasch, C., and Kamoun-Turki, N.: Effect of indium doping on physical properties of nanocrystallized SnS zinc blend thin films grown by chemical bath deposition. J. Renew. Sustain. Energy 4, 011602 (2012).CrossRefGoogle Scholar
20. Jamali-Sheini, F., Cheraghizade, M., and Yousefi, R.: SnS nanosheet films deposited via thermal evaporation: the effects of buffer layers on photovoltaic performance. Sol. Energy Mater. Sol. Cells 154, 49 (2016).CrossRefGoogle Scholar
21. Icdd: The international centre for diffraction data—ICDD—a non-profit scientific organization dedicated to collecting, editing, publishing, and distributing powder diffraction data. In The International Centre for Diffraction Data (The International Centre for Diffraction Data 1997).Google Scholar
22. Wang, M., Zhao, J., Xu, R., Fu, N., and Wang, X.: Preparation and photoluminescence properties of Tm3+-doped ZrO2 nanotube arrays. J. Alloys Compd. 674, 353 (2016).CrossRefGoogle Scholar
23. Basahel, S.N., Ali, T.T., Narasimharao, K., Bagabas, A.A., and Mokhtar, M.: Effect of iron oxide loading on the phase transformation and physicochemical properties of nanosized mesoporous ZrO2 . Mater. Res. Bull. 47, 3463 (2012).CrossRefGoogle Scholar
24. Jamali-Sheini, F., Yousefi, R., Ali Bakr, N., Cheraghizade, M., Sookhakian, M., and Huang, N.M.: Highly efficient photo-degradation of methyl blue and band gap shift of SnS nanoparticles under different sonication frequencies. Mater. Sci. Semicond. Process. 32, 172 (2015).CrossRefGoogle Scholar
25. Dezfuly, R.F., Yousefi, R., and Jamali-Sheini, F.: Photocurrent applications of Zn(1−x)CdxO/rGO nanocomposites. Ceram. Int. 42, 7455 (2016).CrossRefGoogle Scholar
26. Jagadish, C.: Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications (Elsevier Science, UK, 2006).Google Scholar
27. Kim, M.-S., Kim, B.-G., and Kim, J.: Effective variables to control the fill factor of organic photovoltaic cells. ACS Appl. Mater. Interfaces 1, 1264 (2009).CrossRefGoogle ScholarPubMed
28. Wang, Z., Qu, S., Zeng, X., Liu, J., Zhang, C., Tan, F., and Jin, L.: The application of SnS nanoparticles to bulk heterojunction solar cells. J. Alloys Compd. 482, 203 (2009).CrossRefGoogle Scholar
29. Reddy, V.R.M., Gedi, S., Park, C., Miles, R.W., and Kt, R.R.: Development of sulphurized SnS thin film solar cells. Curr. Appl. Phys. 15, 588 (2015).CrossRefGoogle Scholar
30. Andrade-Arvizu, J.A., Courel-Piedrahita, M., and Vigil-Galán, O.: SnS-based thin film solar cells: perspectives over the last 25 years. J. Mater. Sci.: Mater. Electron. 26, 4541 (2015).Google Scholar
31. Subramanian, B., Sanjeeviraja, C., and Jayachandran, M.: Cathodic electrodeposition and analysis of SnS films for photoelectrochemical cells. Mater. Chem. Phys. 71, 40 (2001).CrossRefGoogle Scholar
32. Ramakrishna Reddy, K.T., Pratap, P., and Miles, R.W.: Thin sulphide films for solar photovoltaic application. In Photovoltaics: Developments, Applications and Impact, edited by Tanaka, H. and Yamashita, K. (Nova Science Publishers Inc., New York, 2010), pp. 3762.Google Scholar