Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T23:13:55.271Z Has data issue: false hasContentIssue false

On single-phase status and segregation of an as-solidified septenary refractory high entropy alloy

Published online by Cambridge University Press:  06 February 2017

Boliang Zhang
Affiliation:
Louisiana State University, Baton Rouge, LA 70803, USA
Yang Mu
Affiliation:
Louisiana State University, Baton Rouge, LA 70803, USA
M.C. Gao
Affiliation:
National Energy Technology Laboratory & AECOM Corporation, Albany, OR 97321, USA
W.J. Meng
Affiliation:
Louisiana State University, Baton Rouge, LA 70803, USA
S.M. Guo*
Affiliation:
Louisiana State University, Baton Rouge, LA 70803, USA
*
Address all correspondences to S.M. Guo at sguo2@lsu.edu
Get access

Abstract

Phase predictions and characterizations on as-solidified septenary refractory high-entropy alloy, CrMoNbReTaVW, are presented. The simulated solidification process predicts a single body-centered-cubic (BCC) crystal structure with the tendency of compositional segregation. X-ray diffraction results confirm the “single-phase-like” BCC structure, while further experimental characterizations reveal the existence of multiple grains with significantly different compositions yet the same crystal structure and similar lattice parameters.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
2. Sheng, G. and LIU, C.T.: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Progr. Nat. Sci.: Mater. Int. 21, 433 (2011).Google Scholar
3. Anand, G., Goodall, R., and Freeman, C.L.: Role of configurational entropy in body-centred cubic or face-centred cubic phase formation in high entropy alloys. Scr. Mater. 124, 90 (2016).CrossRefGoogle Scholar
4. Lucas, M., Wilks, G., Mauger, L., Munoz, J.A., Senkov, O., Michel, E., Horwath, J., Semiatin, S., Stone, M.B., and Abernathy, D.L.: Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl. Phys. Lett. 100, 251907 (2012).CrossRefGoogle Scholar
5. Cantor, B., Chang, I., Knight, P., and Vincent, A.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213 (2004).CrossRefGoogle Scholar
6. Senkov, O., Wilks, G., Scott, J., and Miracle, D.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).Google Scholar
7. Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).CrossRefGoogle Scholar
8. Senkov, O., Scott, J., Senkova, S., Miracle, D., and Woodward, C.: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509, 6043 (2011).Google Scholar
9. Kozak, R., Sologubenko, A., and Steurer, W.: Single-phase high-entropy alloys–an overview. Z. Kristallogr. – Crystall. Mater. 230, 55 (2015).Google Scholar
10. Dahlborg, U., Cornide, J., Calvo-Dahlborg, M., Hansen, T.C., Fitch, A., Leong, Z., Chambreland, S., and Goodall, R.: Structure of some CoCrFeNi and CoCrFeNiPd multicomponent HEA alloys by diffraction techniques. J. Alloys Compd. 681, 330 (2016).CrossRefGoogle Scholar
11. Otto, F., Dlouhý, A., Pradeep, K.G., Kuběnová, M., Raabe, D., Eggeler, G., and George, E.P.: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40 (2016).Google Scholar
12. Poletti, M.G., Branz, S., Fiore, G., Szost, B.A., Crichton, W.A., and Battezzati, L.: Equilibrium high entropy phases in X-NbTaTiZr (X = Al, V, Cr and Sn) multiprincipal component alloys. J. Alloys Compd. 655, 138 (2016).Google Scholar
13. Lin, C.-M. and Tsai, H.-L.: Equilibrium phase of high-entropy FeCoNiCrCu0.5 alloy at elevated temperature. J. Alloys Compd. 489, 30 (2010).Google Scholar
14. Pickering, E.J., Muñoz-Moreno, R., Stone, H.J., and Jones, N.G.: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106 (2016).CrossRefGoogle Scholar
15. He, F., Wang, Z., Wu, Q., Li, J., Wang, J., and Liu, C.T.: Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scr. Mater. 126, 15 (2017).Google Scholar
16. Saunders, N. and Miodownik, A.P.: CALPHAD (Calculation of Phase Diagrams): a Comprehensive Guide (Elsevier, Oxford, 1998).Google Scholar
17. Zhang, B., Gao, M., Zhang, Y., Yang, S., and Guo, S.: Senary refractory high entropy alloy MoNbTaTiVW. Mater. Sci. Technol., 1743284715Y. 0000000031 (2015).Google Scholar
18. Gao, M., Zhang, B., Yang, S., and Guo, S.: Senary Refractory High-Entropy Alloy HfNbTaTiVZr. Metall. Mater. Trans. A 47, 33333345 (2016).CrossRefGoogle Scholar
19. Zhang, B., Gao, M., Zhang, Y., and Guo, S.: Senary refractory high-entropy alloy CrxMoNbTaVW. Calphad 51, 193 (2015).Google Scholar
20. Gulliver, G.: The quantitative effect of rapid cooling upon the constitution of binary alloys. J. Inst. Met. 13, 263 (1915).Google Scholar
21. Porter, D.A. and Easterling, K.E.: Phase Transformations in Metals and Alloys, 2nd ed. (CRC Press, Boca Raton, Florida, 2004).Google Scholar
22. Cullity, B.D. and Stock, S.R.: Elements of X-Ray Diffraction, 3rd ed. (Prentice-Hall, Upper Saddle River, New Jersey, 2001).Google Scholar