Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T15:46:40.509Z Has data issue: false hasContentIssue false

A perspective on electrical energy storage

Published online by Cambridge University Press:  16 December 2014

John B. Goodenough
Affiliation:
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712
Arumugam Manthiram*
Affiliation:
Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712
*
Address all correspondence to Arumugam Manthiram at manth@austin.utexas.edu
Get access

Abstract

Electrochemical technologies promise to provide the means for electrical energy storage of electricity generated from wind, solar, or nuclear energies. The challenge is to provide this storage in rechargeable batteries or clean fuels at a cost that is competitive with fossil fuels for replacement: (1) of vehicles powered by the internal combustion engine by electric vehicles and (2) of centralized power plants using intermittent electricity generated by wind and solar energy or constant electricity from a nuclear power plant, all serving a variable demand. This perspective outlines existing and possible lines of materials research for the development of rechargeable batteries or the production of clean fuels within the constraints of electrochemical technology.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., Lu, X., Choi, D., Lemmon, J.P., and Liu, J.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577 (2011).Google Scholar
2.Goodenough, J.B. and Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010).CrossRefGoogle Scholar
3.Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B.: LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783 (1980).CrossRefGoogle Scholar
4.Basu, S.: Ambient-temperature secondary battery. U. S. Patent No. 4,423,125 (1983).Google Scholar
5.Yazami, R. and Touzain, Ph.: A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 9, 365 (1983).Google Scholar
6.Yoshin, A., Sanechika, K., and Nakjima, T.: Secondary battery. U. S. Patent No. 4,688,595 and Japanese Patent No. 1989293 (1985).Google Scholar
7.Thackeray, M.M., David, W.I.F., Bruce, P.G., and Goodenough, J.B.: Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461 (1983).Google Scholar
8.Chebiam, R.V., Kannan, A.M., Prado, F., and Manthiram, A.: Comparison of the chemical stability of high energy density cathodes of lithium-ion batteries. Electrochem. Commun. 3, 624 (2001).Google Scholar
9.Venkatraman, S., Shin, Y., and Manthiram, A.: Phase relationships and structural and chemical stabilities of charged Li1-xCoO2-δ and Li1-xNi0.85Co0.15O2-δ. Electrochem. Solid State Lett. 6, A9 (2003).Google Scholar
10.Zhong, Q., Bonakdarpour, A., Zhang, M., Gao, Y., and Dahn, J.R.: Synthesis and electrochemistry of LiNixMn2-x O4. J. Electrochem. Soc. 144, 205 (1997).Google Scholar
11.Ohzuku, T., Ariyoshi, K., and Yamamoto, S.: Synthesis and characterization of Li[Ni1/2Mn3/2]O4 by two-step solid state reaction. J. Ceram. Soc. Jpn 110, 501 (2002).Google Scholar
12.Manthiram, A., Chemelewski, K., and Lee, E.-S.: A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ. Sci. 7, 1339 (2014).Google Scholar
13.Ferg, E., Gummoow, R.J., de Kock, A., and Thackeray, M.M.: Spinel anodes for lithium-ion batteries. J. Electrochem. Soc. 141, L147 (1994).Google Scholar
14.Manthiram, A. and Goodenough, J.B.: Lithium insertion into Fe2(SO4)3-type frameworks. J. Power Sources 26, 403 (1989).CrossRefGoogle Scholar
15.Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).Google Scholar
16.Dong, Y., Wang, L., Zhang, S., Zhao, Y., Zhou, J., Xie, H., and Goodenough, J.B.: Two-phase interface in LiMnPO4 nanoplates. J. Power Sources 215, 116 (2012).Google Scholar
17.Obrovac, M.N. and Christensen, L.: Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7, A93 (2004).Google Scholar
18.Li, J. and Dahn, J.R.: An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154, A156 (2007).Google Scholar
19.Park, C.-M., Kim, J.-H., Kim, H., and Sohn, H.-J.: Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115 (2010).Google Scholar
20.Lu, Z., Chen, Z., and Dahn, J.R.: Lack of cation clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0<x≤1/2) and Li[CrxLi(1-x)/3Mn(2-2x)/3]O2 (0<x<1). Chem. Mater. 15, 3214 (2003).CrossRefGoogle Scholar
21.Armstrong, A.R., Holzapfel, M., Novák, P., Johnson, C.S., Kang, S.H., Thackeray, M.M., and Bruce, P.G.: Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 128, 8694 (2006).Google Scholar
22.Carlier, D., Cheng, J.H., Berthelot, R., Guignard, M., Yoncheva, M., Stoyanova, R., Hwang, B.J., and Delmas, C.: The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans. 40, 9306 (2011).Google Scholar
23.Goodenough, J.B., Hong, H.Y.-P., and Kafalas, J.A.: Fast Na+-ion transport in skeleton structures Mater. Res. Bull. 11, 203 (1976).CrossRefGoogle Scholar
24.Gopalakrishinan, J. and Rangan, K.K.: Vanadium phosphate (V2(PO4)3): a novel NASICON-type vanadium phosphate synthesized by oxidative deintercalation of sodium from sodium vanadium phosphate (Na3V2(PO4)3). Chem. Mater. 4, 745 (1992).Google Scholar
25.Gover, R.K.B., Bryan, A., Burns, P., and Barker, J.: The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics, 177, 1495 (2006).Google Scholar
26.Song, J., Wang, L., Yu, Y., Liu, J., Guo, B., Xiao, P., Lee, J., Yang, X., Henkelman, G., and Goodenough, J.B.: Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Amer. Chem. Soc. (in review).Google Scholar
27.Rauh, R.D., Abraham, K.M., Pearson, G.F., Surprenant, J.K., and Brummer, S.B.: A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523 (1979).Google Scholar
28.Ji, X., Lee, K.T., and Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500 (2009).Google Scholar
29.Bruce, P.G., Freunberger, S.A., Hardwick, L.J., and Tarascon, J.M.: Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19 (2012).Google Scholar
30.Manthiram, A., Fu, Y.-Z., and Su, Y.-S.: Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 46, 1125 (2013).CrossRefGoogle ScholarPubMed
31.Manthiram, A., Fu, Y.-Z., Chung, S.-H., Zu, C., and Su, Y.-S.: Rechargeable lithium-sulfur batteries. Chem. Rev. DOI:10.1021/cr500062v (2014).Google Scholar
32.Taberna, P.L., Mitra, S., Poizot, P., Simon, P., and Tarascon, J.-M.: High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567 (2006).Google Scholar
33.Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., and Tarascon, J.-M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496 (2000).CrossRefGoogle ScholarPubMed
34.Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y.: High performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3, 31 (2008).Google Scholar
35.Tu, J., Zhao, Z., Hu, L., Jiao, S., Hou, J., and Zhu, H.: 3D structure through planting core-shell Si@TiN into an amorphous carbon slag: improved capacity of lithium-ion anodes. Phys. Chem. Chem. Phys. 15, 10472 (2013).Google Scholar
36.Yoon, S. and Manthiram, A.: Sb-MOx-C (M=Al, Ti, or Mo) nanocomposite anodes for lithium-ion batteries. Chem. Mater. 21, 3898 (2009).Google Scholar
37.Muraliganth, T., Vadivel Murugan, A., and Manthiram, A.: Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium-ion batteries. Chem. Comm. 49, 7360 (2009).Google Scholar
38.Zhong, K.F., Xia, X., Zhang, B., Li, H., Wang, Z.X., and Chen, L.Q.: MnO powder as anode active materials for lithium ion batteries. J. Power Sources 195, 3300 (2010).CrossRefGoogle Scholar
39.Kummer, J.T.: β-alumina electrolytes, in The sodium-sulfur battery, edited by Sudworth, J.L. and Tilley, A.R. (Chapman and Hall, London, 1985), p. 141.Google Scholar
40.Sudworth, J.L.: The sodium/nickel chloride (ZEBRA) battery. J. Power Sources 100, 149 (2001).Google Scholar
41.Skyllas-kazacos, M. and Grossmith, F.: Efficient vanadium redox flow cell. J. Electrochem. Soc. 134, 2950 (1987).Google Scholar
42.Kim, S., Yan, J., Schwenzer, B., Zhang, J.L., Li, L.Y., Liu, J., Yang, Z.G., and Hickner, M.A.: Investigation of sulfonated poly(phenylsulfone) membrane for vanadium redox flow batteries. Electrochem. Commun. 12, 1650 (2010).CrossRefGoogle Scholar
43.Abraham, K.M. and Jiang, Z.: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1 (1996).CrossRefGoogle Scholar
44.Freunberger, S.A., Chen, Y., Peng, Z., Griffin, J.M., Hardwick, L.J., Barde, F., Novak, P., and Bruce, P.G.: Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040 (2011).Google Scholar
45.Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S., and Wilcke, W.: Lithium-air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193 (2010).Google Scholar
46.Xu, N., Li, X., Zhao, X., Goodenough, J.B., and Huang, K.: A novel solid oxide redox flow battery for grid energy storage. Energy Environ. Sci. 4, 4942 (2011).Google Scholar
47.Maiyalagan, T., Jarvis, K.A., Therese, S., Ferreira, P.J., and Manthiram, A.: Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for oxygen evolution and oxygen reduction reactions. Nat. Commun. 5, 3949 (2014).Google Scholar
48.Li, L., Cai, S.-H., Dai, S., and Manthiram, A.: Advanced hybrid Li-air batteries with high-performance mesoporous nanocatalysts. Energy Environ. Sci. 7, 2630 (2014).Google Scholar
49.Visco, S.J., Nimon, Y.S., and Katz, B.D.: Ionically conductive composites for protection of active metal anodes. US Patent No. 7,282,296 B2 (2007).Google Scholar
50.Manthiram, A. and Li, L.: Hybrid and aqueous lithium-air batteries. Adv. Energy Mater. DOI:10.1002/aenm.201401302 (2014).Google Scholar