Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T22:44:02.074Z Has data issue: false hasContentIssue false

Spatial–temporal spectroscopy characterizations and electronic structure of methylammonium perovskites

Published online by Cambridge University Press:  09 July 2018

Zhaoyu Liu
Affiliation:
Division of Materials Science and Engineering, Ames Laboratory, Ames, IA 50011, USA Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
K. C. Bhamu
Affiliation:
CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
Liang Luo
Affiliation:
Division of Materials Science and Engineering, Ames Laboratory, Ames, IA 50011, USA Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
Satvik Shah
Affiliation:
Department of Electrical and Computer Engineering and Microelectronics Research Center, Iowa State University, Ames, IA 50011, USA
Joong-Mok Park
Affiliation:
Division of Materials Science and Engineering, Ames Laboratory, Ames, IA 50011, USA Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
Di Cheng
Affiliation:
Division of Materials Science and Engineering, Ames Laboratory, Ames, IA 50011, USA Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
Men Long
Affiliation:
Division of Chemical and Biological Sciences, Ames Laboratory, Ames, IA 50011, USA Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
Rana Biswas*
Affiliation:
Division of Materials Science and Engineering, Ames Laboratory, Ames, IA 50011, USA Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
F. Fungara
Affiliation:
Division of Materials Science and Engineering, Ames Laboratory, Ames, IA 50011, USA Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
Ruth Shinar
Affiliation:
Department of Electrical and Computer Engineering and Microelectronics Research Center, Iowa State University, Ames, IA 50011, USA
Joseph Shinar
Affiliation:
Division of Materials Science and Engineering, Ames Laboratory, Ames, IA 50011, USA Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
Javier Vela
Affiliation:
Division of Chemical and Biological Sciences, Ames Laboratory, Ames, IA 50011, USA Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
Jigang Wang*
Affiliation:
Division of Materials Science and Engineering, Ames Laboratory, Ames, IA 50011, USA Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
*
Address all correspondence to Rana Biswas, Jigang Wang at biswasr@iastate.edu, jwang@ameslab.gov
Address all correspondence to Rana Biswas, Jigang Wang at biswasr@iastate.edu, jwang@ameslab.gov
Get access

Abstract

Using time-resolved laser-scanning confocal microscopy and ultrafast optical pump/THz probe spectroscopy, we measure photoluminescence (PL) and THz-conductivity in perovskite micro-crystals and films. PL quenching and lifetime variations occur from local heterogeneity. Ultrafast THz-spectra measure sharp quantum transitions from excitonic Rydberg states, providing weakly bound excitons with a binding energy of ~13.5 meV at low temperatures. Ab-initio electronic structure calculations give a direct band gap of 1.64 eV, a dielectric constant of ~18, heavy electrons, and light holes, resulting in weakly bound excitons, consistent with the binding energies from the experiment. The complementary spectroscopy and simulations reveal fundamental insights into perovskite light-matter interactions.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

1.Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 60506051 (2009).Google Scholar
2.Zhou, H.P., Chen, Q., Li, G., Luo, S., Song, T.B., Duan, H.S., Hong, Z.R., You, J.B., Liu, Y.S., and Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542546 (2014).Google Scholar
3.Park, N.G.: Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 24232429 (2013).Google Scholar
4.Bach, U.: Perovskite solar cells: Brighter pieces of the puzzle. Nat. Chem. 7, 616617 (2015).Google Scholar
5.Sessolo, M. and Bolink, H.J.: Perovskite solar cells join the major league. Science 350, 917 (2015).Google Scholar
6.Im, J.H., Jang, I.H., Pellet, N., Gratzel, M., and Park, N.G.: Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotech. 9, 927932 (2014).Google Scholar
7.Jeon, J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., and Il Seok, S.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897903 (2014).Google Scholar
8.Saliba, M., Matsui, T., Seo, J-Y., Domanski, K., Correa-Baena, J-P., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., and Grätzel, M.: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 19891997 (2016).Google Scholar
9.Li, X., Bi, D., Yi, C., Décoppet, J-D., Luo, J., Zakeeruddin, S.M., Hagfeldt, A., and Grätzel, M.: A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 5862 (2016).Google Scholar
10.Docampo, P., Ball, J.M., Darwich, M., Eperon, G.E., and Snaith, H.J.: Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761 (2013).Google Scholar
11.Abbas, H., Kottokkaran, R., Samiee, M., Zhang, L., Ganapathy, B., Kitahara, A., Noack, M., and Dalal, V.L.: High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer. APL Mater. 3, 016105 (2015).Google Scholar
12.Stranks, S.D. and Snaith, H.J.: Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391402 (2015).Google Scholar
13.Xing, G., Mathews, N., Sun, S., Lim, S. S., Lam, Y.M., Grätzel, M., Mhaisalkar, S., and Sum, T.C.: Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344347 (2013).Google Scholar
14.Li, Y., Yan, W., Li, Y., Wang, S., Wang, W., Bian, Z., Xiao, L., and Gong, Q.: Direct observation of long electron-hole diffusion distance in CH3NH3PbI3 perovskite thin films. Sci. Rep. 5, 14485 (2015).Google Scholar
15.Liu, S., Wang, L., Lin, W-C., Sucharitakul, S., Burda, C., and Gao, X.P.A.: Imaging the long transport lengths of photo-generated carriers in oriented perovskite films. Nano Lett. 16, 79257929 (2016).Google Scholar
16.Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., and Huang, J.: Electron-hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967970 (2015).175+µm+in+solution-grown+CH3NH3PbI3+single+crystals.+Science+347,+967–970+(2015).>Google Scholar
17.Li, C., Tscheuschner, S., Paulus, F., Hopkinson, P.E., Kießling, J., Köhler, A., Vaynzof, Y., and Huettner, S.: Iodine migration and its effect on hysteresis in perovskite solar cells. Adv. Mater. 28, 24462454 (2016).Google Scholar
18.Meloni, S., Moehl, T., Tress, W., Franckevičius, M., Saliba, M., Lee, Y.H., Cao, P., Nazeeruddin, M.K., Zakeeruddin, S.M., Rothlisberger, U., and Graetzel, M.: Ionic polarization-induced current–voltage hysteresis in CH3NH3PbI3 perovskite solar cells. Nat. Commun. 7, 10334(1)-9 (2016).Google Scholar
19.Wang, Y., Gould, T., Dobson, J.F., Zhang, H., Yang, H., Yaob, X., and Zhao, H.: Density functional theory analysis of structural and electronic properties of orthorhombic perovskite. Phys. Chem. Chem. Phys. 16, 14241429 (2014).Google Scholar
20.Wang, R., Wu, C., Hu, Y., Li, J., Shen, P., Wang, Q., Liao, L., Liu, L., and Duhm, S.: CH3NH3PbI3–x Clx under different fabrication strategies: electronic structures and energy-level alignment with an organic hole transport material. ACS Appl. Mater. Interfaces 9, 78597865 (2017).Google Scholar
21.Haruyama, J., Sodeyama, K., Han, L., and Tateyama, Y.: Surface properties of CH3NH3PbI3 for perovskite solar cells. Acc. Chem. Res. 49, 554561 (2016).Google Scholar
22.Yamada, Y., Yamada, T., Phuong, L.Q., Maruyama, N., Nishimura, H., Wakamiya, A., Murata, Y., and Kanemitsu, Y.: Dynamic optical properties of CH3NH3PbI3 single crystals as revealed by one- and two-photon excited photoluminescence measurements. J. Am. Chem. Soc. 137, 1045610459 (2015).Google Scholar
23.Lindblad, R., Bi, D., Park, B-W., Oscarsson, J., Gorgoi, M., Siegbahn, H., Odelius, M., Johansson, E.M.J., and Rensmo, H.: Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J. Phys. Chem. Lett. 5, 648653 (2014).Google Scholar
24.Geng, W., Tong, C-J., Liu, J., Zhu, W., Lau, W-M., and Liua, L-M.: Structures and electronic properties of different CH3NH3PbI3/TiO2 interface: a first-principles study. Sci. Rep. 6, 20131(1)-8 (2016).Google Scholar
25.Abdi-Jalebi, M., Dar, M.I., Sadhanala, A., Senanayak, S.P., Franckevičius, M., Arora, N., Hu, Y., Nazeeruddin, M.K., Zakeeruddin, S.M., and Grätzel, M.: Impact of monovalent cation halide additives on the structural and optoelectronic properties of CH3NH3PbI3 perovskite. Adv. Energy Mater. 6, 1502472 (2016).Google Scholar
26.Hata, T., Giorgi, G., and Yamashita, K.: The effects of the organic–inorganic interactions on the thermal transport properties of CH3NH3PbI3. Nano Lett. 16, 27492753 (2016).Google Scholar
27.Jiang, Y., Soufiani, A.M., Gentle, A., Huang, F., Ho-Baillie, A., and Green, M.A.: Optical properties of photovoltaic organic–inorganic lead halide perovskites. Appl. Phys. Lett. 108, 061905(1)-5 (2016).Google Scholar
28.Zhang, Y., Wang, Y., Xu, Z.Q., Liu, J., Song, J., Xue, Y., Wang, Z., Zheng, J., Jigang, L., Zheng, C., Huang, F., Sun, B., Cheng, Y.B., and Bao, Q.: Reversible structural swell–shrink and recoverable optical properties in hybrid inorganic–organic perovskite. ACS Nano 10, 70317038 (2016).Google Scholar
29.Quarti, C., Mosconi, E., Ball, J.M., D'Innocenzo, V., Tao, C., Pathak, S., Snaith, H.J., Petrozza, A., and Angelis, F.D.: Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy Environ. Sci. 9, 155163 (2016).Google Scholar
30.Lai, M., Kong, Q., Bischak, C.G., Yu, Y., Dou, L., Eaton, S.W., Ginsberg, N.S., and Yang, P.: Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 10, 11071114 (2017).Google Scholar
31.deQuilettes, D.W., Vorpahl, S.M., Stranks, S.D., Nagaoka, H., Eperson, G.E., Ziffer, M.E., Snaith, H.J., and Ginger, D.S.: Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683686 (2015).Google Scholar
32.Luo, L., Men, L., Liu, Z., Mudryk, Y., Zhao, X., Yao, Y., Park, J.M., Shinar, R., Shinar, J., Ho, K.M., Perakis, I.E., Vela, J., and Wang, J.: Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite. Nat. Commun. 8, 15565(1)-8 (2017).Google Scholar
33.D'Innocenzo, V., Grancini, G., Alcocer, M.J.P., Khandada, A.R.S., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J., and Petrozza, A.: Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 35869(1)-6 (2014).Google Scholar
34.Kong, W., Ye, Z., Qi, Z., Zhang, B., Wang, M., Rahimi-Iman, A., and Wu, H.: Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 17, 1640516411 (2015).Google Scholar
35.Fan, P., Gu, D., Liang, G-X., Luo, J-T., Chen, J-L., Zheng, Z-H., and Zhang, D-P.: High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci. Rep. 6, 29910(1)-9 (2016).Google Scholar
36.La-o-vorakiat, C., Xia, H., Kadro, J., Salim, T., Zhao, D., Ahmed, T., Lam, Y.M., Zhu, J-X., Marcus, R.A., and Michel-Beyerle, M-E.: Phonon mode transformation across the orthohombic–tetragonal phase transition in a lead iodide perovskite CH3NH3PbI3: a terahertz time-domain spectroscopy approach. J. Phys. Chem. Lett. 7, 16 (2016).Google Scholar
37.La-o-vorakiat, C., Slim, T., Kadro, J., Khuc, M-T., Haselsberger, R., Cheng, L., Xia, H., Gurzadyan, G.G., Su, H., Lam, Y.M., Marcus, R.A., Michel-Beyerle, M-E., and Chia, E.E.M.: Elucidating the role of disorder and free-carrier recombination kinetics in CH3NH3PbI3 perovskite films. Nat. Commun. 6, 7903(1)-7 (2015).Google Scholar
38.Wu, Z. and Cohen, R.E.: More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116(1)-6 (2006).Google Scholar
39.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996).Google Scholar
40.Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., and Luitz, J.: WIEN2k_14.2: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. ISBN 3-9501031-1-2 (Techn. Universitä Wien, Austria, 2001).Google Scholar
41.Tran, F. and Blaha, P.: Accurate band gaps of semiconductors and insulators with a semi-local exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).Google Scholar
42.Zhu, X., Su, H., Marcus, R.A., and Michel-Beyerle, M.E.: Computed and experimental absorption spectra of the perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 5, 30613065 (2014).Google Scholar
43.Feng, J., and Xiao, B.: Crystal structures, optical propoerties and effective mass tensors of CH3NH3PBX3 (x=I and Br) phases predicted from HSEO6. J. Phys. Chem. Lett 5, 12781282 (2014).Google Scholar
44.Geng, W., Zhang, L., Zhang, Y-N., and Lau, W-M.: First principles study of iodide perovskite tetragonal and orthorhombic phases for photovoltaics. J. Phys. Chem. C 118, 1956519571 (2014).Google Scholar
45.Ziman, J.M.: Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972).Google Scholar
46.Saimee, M., Konduri, S., Ganapathy, B., Kottokkaran, R., Abbas, H.A., Kitahara, A., Joshi, P., Zhang, L., Noack, M., and Dalal, V.: Defect density and dielectric constant in perovskite solar cells. Appl. Phys. Lett. 105, 153502(1)-4 (2014).Google Scholar
47.Chin, X.Y., Cortecchia, D., Yin, J., Bruno, A., and Soci, C.: Lead iodide perovskite light-emitting field-effect Transistor. Nat. Commun. 6, 83838389 (2015).Google Scholar
48.Umari, P., Mosconi, E., and De Angelis, F.: Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467(1)-7 (2014).Google Scholar
49.Keldysh, L. V.: Coulomb interaction in thin semiconductor and semimetal films. JETP Lett. 29, 658661 (1979).Google Scholar
Supplementary material: File

Liu et al. supplementary material

Liu et al. supplementary material 1

Download Liu et al. supplementary material(File)
File 29 KB