Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T11:04:55.645Z Has data issue: false hasContentIssue false

The structure and mechanical properties of Cu50Ni50 alloy nanofoams formed via polymeric templating

Published online by Cambridge University Press:  11 March 2020

Chang-Eun Kim
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, IN47906-2045, USA Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA94550, USA
Raheleh M. Rahimi
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, IN47906-2045, USA
David F. Bahr*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, IN47906-2045, USA
*
Address all correspondence to David Bahr at dfbahr@purdue.edu
Get access

Abstract

The authors demonstrate that multicomponent metallic alloy nanofoams can be synthesized by the polymeric templating method. The present approach enabled alloy compositions not accessible via commonly used dealloying or co-deposition methods. The authors report the synthesis of a Cu50Ni50 alloy nanofoam using electrospinning polymeric templating, which exhibits distinct polycrystallinity, process-driven segregation, and enhanced mechanical strength over pure Cu nanofoams. Transmission electron microscopy revealed microscopic grain formation and their variable compositions. The processing method is applicable to the synthesis of a wide range of multicomponent metal porous materials, creating new research opportunities for noble alloy foams not available through wet electrochemical routes.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Luc, W. and Jiao, F.: Nanoporous metals as electrocatalysts: state-of-the-art, opportunities, and challenges. ACS Catal. 7, 5856 (2017).CrossRefGoogle Scholar
2.Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V., and Abraham, F.F.: Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379 (2006).CrossRefGoogle ScholarPubMed
3.Neogi, A., He, L., and Abdolrahim, N.: Atomistic simulations of shock compression of single crystal and core-shell Cu@ Ni nanoporous metals. Jpn J. Appl. Phys. 126, 015901 (2019).CrossRefGoogle Scholar
4.Biener, J., Nyce, G.W., Hodge, A.M., Biener, M.M., Hamza, A.V., and Maier, S.A.: Nanoporous plasmonic metamaterials. Adv. Mater. 20, 1211 (2008).CrossRefGoogle Scholar
5.McCue, I., Benn, E., Gaskey, B., and Erlebacher, J.: Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263 (2016).CrossRefGoogle Scholar
6.Stratmann, M. and Rohwerder, M.: Materials science: a pore view of corrosion. Nature 410, 420 (2001).CrossRefGoogle ScholarPubMed
7.Erlebacher, J.: An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 151, C614 (2004).CrossRefGoogle Scholar
8.Hakamada, M. and Mabuchi, M.: Fabrication, microstructure, and properties of nanoporous Pd, Ni, and their alloys by dealloying. Crit. Rev. Solid State Mater. Sci. 38, 262 (2013).CrossRefGoogle Scholar
9.Li, G.G. and Wang, H.: Dealloyed nanoporous gold catalysts: from macroscopic foams to nanoparticulate architectures. ChemNanoMat 4, 897 (2018).CrossRefGoogle Scholar
10.Hodge, A., Doucette, R., Biener, M., Biener, J., Cervantes, O., and Hamza, A.: Ag effects on the elastic modulus values of nanoporous Au foams. J. Mater. Res. 24, 1600 (2009).CrossRefGoogle Scholar
11.Kim, C.-E., Rahimi, R.M., Hightower, N., Mastorakos, I., and Bahr, D.F.: Synthesis, microstructure, and mechanical properties of polycrystalline Cu nano-foam. MRS Adv. 3, 469 (2018).CrossRefGoogle Scholar
12.Zhang, J., Baró, M.D., Pellicer, E., and Sort, J.: Electrodeposition of magnetic, superhydrophobic, non-stick, two-phase Cu–Ni foam films and their enhanced performance for hydrogen evolution reaction in alkaline water media. Nanoscale 6, 12490 (2014).CrossRefGoogle ScholarPubMed
13.Greiner, A. and Wendorff, J.H.: Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46, 5670 (2007).CrossRefGoogle ScholarPubMed
14.Liu, J., Chang, M.J., and Du, H.L.: Facile preparation of cross-linked porous poly(vinyl alcohol) nanofibers by electrospinning. Mater. Lett. 183, 318 (2016).CrossRefGoogle Scholar
15.Eick, B.M. and Youngblood, J.P.: SiC nanofibers by pyrolysis of electrospun preceramic polymers. J. Mater. Sci. 44, 160 (2009).CrossRefGoogle Scholar
16.Spencer, P.J. and Slough, W.: Applied and experimental chemical thermodynamics at high temperatures. High Temp. High Press. 2, 123 (1970).Google Scholar
17.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
18.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).CrossRefGoogle Scholar
19.Bahr, D.F. and Morris, D.J.: Nanoindentation: localized probes of mechanical behavior of materials. In Springer Handbook of Experimental Solid Mechanics, ed. Sharpe, W.N. (Springer, New York NY, 2008), pp. 389404.CrossRefGoogle Scholar
20.Divinski, S., Ribbe, J., Schmitz, G., and Herzig, C.: Grain boundary diffusion and segregation of Ni in Cu. Acta Mater. 55, 3337 (2007).CrossRefGoogle Scholar
21.Zen, E.A.: Validity of “Vegard's Law” 41(5–6), 523524 (1956).Google Scholar
22.Denton, A.R. and Ashcroft, N.W.: Vegard's law. Phys. Rev. A 43, 3161 (1991).CrossRefGoogle ScholarPubMed
23.Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., and Sieradzki, K.: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).CrossRefGoogle ScholarPubMed
24.Weisweiler, W.: Kinetic studies of the catalytic graphitizing of glass-like carbon with the aid of nickel. High Temp. High Press. 2, 187 (1970).Google Scholar
25.Ashby, M.: The properties of foams and lattices. Philos. Trans. R. Soc. A 364, 15 (2006).CrossRefGoogle ScholarPubMed
26.Xiao, X., Yu, H., Jin, H., Wu, M., Fang, Y., Sun, J., Hu, Z., Li, T., Wu, J., and Huang, L.: Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 11, 2180 (2017).CrossRefGoogle ScholarPubMed
27.Xiao, X., Song, H., Lin, S., Zhou, Y., Zhan, X., Hu, Z., Zhang, Q., Sun, J., Yang, B., and Li, T.: Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 7, 1 (2016).CrossRefGoogle ScholarPubMed
28.Burpo, F.J., Nagelli, E.A., Losch, A.R., Bui, J.K., Forcherio, G.T., Baker, D.R., McClure, J.P., Bartolucci, S.F., and Chu, D.D.: Salt-templated platinum-copper porous macrobeams for ethanol oxidation. Catalysts 9, 662 (2019).CrossRefGoogle Scholar
29.Burpo, F.J., Nagelli, E.A., Mitropoulos, A.N., Bartolucci, S.F., McClure, J.P., Baker, D.R., Losch, A.R., and Chu, D.D.: Salt-templated platinum–palladium porous macrobeam synthesis. MRS Commun. 9, 280 (2019).CrossRefGoogle Scholar
Supplementary material: File

Kim et al. supplementary material

Kim et al. supplementary material

Download Kim et al. supplementary material(File)
File 39.9 KB