Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T11:42:39.728Z Has data issue: false hasContentIssue false

Depolymerizable polymers: preparation, applications, and future outlook

Published online by Cambridge University Press:  20 May 2015

Joshua A. Kaitz
Affiliation:
Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
Olivia P. Lee
Affiliation:
Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
Jeffrey S. Moore*
Affiliation:
Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
*
Address all correspondence to Jeffrey S. Moore atjsmoore@illinois.edu
Get access

Abstract

Depolymerizable polymers are stimuli-responsive materials triggered to depolymerize rapidly and completely into their constituent monomers on command. Applications include triggerable vehicles for controlled release, restructurable materials, disappearing or sacrificial composites, and lithographic resists. Owing to their widespread utility, significant efforts have aimed to prepare and explore depolymerizable polymers and their corresponding triggers. This “Prospective” highlights advances since their discovery over a half-century ago, discusses methods in their preparation, and presents recent developments in triggered depolymerization. It also surveys applications that harness these polymers’ unique properties, while offering insights into research directions that may contribute to progress in this dynamic field.

Type
Polymers/Soft Matter Prospective Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Peterson, G.I., Larsen, M.B., and Boydston, A.J.: Controlled depolymerization: stimuli-responsive self-immolative polymers. Macromolecules 45, 7317 (2012).Google Scholar
2.Phillips, S.T. and DiLauro, A.M.: Continuous head-to-tail depolymerization: an emerging concept for imparting amplified responses to stimuli-responsive materials. ACS Macro Lett. 3, 298 (2014).Google Scholar
3.Phillips, S.T., Robbins, J.S., DiLauro, A.M., and Olah, M.G.: Amplified responses in materials using linear polymers that depolymerize from end-to-end when exposed to specific stimuli. J. Appl. Polym. Sci. 131, 40992 (2014).CrossRefGoogle Scholar
4.Gnaim, S. and Shabat, D.: Quinone-methide species, a gateway to functional molecular systems: from self-immolative dendrimers to long-wavelength fluorescent dyes. Acc. Chem. Res. 47, 2970 (2014).CrossRefGoogle ScholarPubMed
5.Avital-Scmilovici, M. and Shabat, D.: Self-immolative dendimers: a distinctive approach to molecular amplification. Soft Matter 6, 1073 (2010).CrossRefGoogle Scholar
6.Wong, A.D., DeWit, M.A., and Gillies, E.R.: Amplified release through the stimulus triggered degradation of self-immolative oligomers, dendrimers, and linear polymers. Adv. Drug Deliv. Rev. 64, 1031 (2012).Google Scholar
7.Jenkins, A.D., Kratochvíl, P., Stepto, R.F.T., and Suter, U.W.: Glossary of basic terms in polymer science. Pure Appl. Chem. 68, 2287 (1996).Google Scholar
8.David, C.: Thermal degradation of polymers, in Comprehensive Chemical Kinetics Volume 14: Degradation of Polymers, edited by Bamford, C.H. and Tipper, C.F.H. (Elvesier Scientific Publishing Company, New York, 1975), pp. 1173.Google Scholar
9.Snow, R.D. and Frey, F.E.: The reaction of sulfur dioxide with olefins: the ceiling temperature phenomenon. J. Am. Chem. Soc. 65, 2417 (1943).Google Scholar
10.Dainton, F.S. and Ivin, K.J.: Reversibility of the propagation reaction in polymerization processes and its manifestation in the phenomenon of a ‘ceiling temperature’. Nature 162, 705 (1948).CrossRefGoogle Scholar
11.Dainton, F.S. and Ivin, K.J.: The kinetics of polysulphone formation. II. The formation of 1-butene polysulphone in the region of the ceiling temperature. Proc. R. Soc. Lond. A 212, 207 (1952).Google Scholar
12.Cook, R.E., Dainton, F.S., and Ivin, K.J.: Effect of olefin structure on the ceiling temperature for olefin polysulfone formation. J. Polym. Sci. 26, 351 (1957).Google Scholar
13.Dainton, F.S. and Ivin, K.J.: Some thermodynamic and kinetic aspects of addition polymerisation. Q. Rev. Chem. Soc. 12, 61 (1958).Google Scholar
14.Ivin, K.J.: Thermodynamics of addition polymerization processes. Angew. Chem. Int. Ed. 12, 487 (1973).CrossRefGoogle Scholar
15.Ivin, K.J.: Thermodynamics of addition polymerization. J. Polym. Sci. A, Polym. Chem. 38, 2137 (2000).3.0.CO;2-D>CrossRefGoogle Scholar
16.Sawada, H.: Thermodynamics of polymerization. I. J. Macromol. Sci. C, Polym. Rev. 3, 313 (1969).Google Scholar
17.Sawada, H.: Thermodynamics of polymerization. IV. Thermodynamics of equilibrium polymerization. J. Macromol. Sci. C, Polym. Rev. 8, 235 (1972).Google Scholar
18.Vogl, O.: Addition polymers of aldehydes. J. Polym. Sci. A, Polym. Chem. 38, 2293 (2000).Google Scholar
19.Kostler, S.: Polyaldehydes: homopolymers, block copolymers and promising applications. Polym. Int. 61, 1221 (2012).CrossRefGoogle Scholar
20.Kubisa, P., Neeld, K., Starr, J., and Vogl, O.: Polymerization of higher aldehydes. Polymer 21, 1433 (1980).Google Scholar
21.Vogl, O.: Kinetics of aldehyde polymerization. J. Macromol. Sci. C, Polym. Rev. 12, 109 (1975).Google Scholar
22.Odian, G.: Principles of Polymerization, 4th ed. (Wiley-Interscience, New York, 2004), pp. 204206.Google Scholar
23.Brown, N.: Polymerization of formaldehyde. J. Macromol. Sci. A, Pure Appl. Chem. 1, 209 (1967).Google Scholar
24.Masamoto, J.: Modern polyacetals. Prog. Polym. Sci. 18, 1 (1993).Google Scholar
25.Schweitzer, C.E., MacDonald, R.N., and Punderson, J.O.: thermally stable high molecular weight polyoxymethylenes. J. Appl. Polym. Sci. 1, 158 (1959).Google Scholar
26.Koch, T.A. and Lindvig, P.E.: Molecular structure of high molecular weight acetal resins. J. Appl. Polym. Sci. 1, 164 (1959).Google Scholar
27.Hammer, C.F., Koch, T.A., and Whitney, J.F.: Fine structure of acetal resins and its effect on mechanical properties. J. Appl. Polym. Sci. 1, 169 (1959).CrossRefGoogle Scholar
28.Linton, W.H. and Goodman, H.H.: Physical properties of high molecular weight acetal resins. J. Appl. Polym. Sci. 1, 179, (1959).CrossRefGoogle Scholar
29.Alsup, R.G., Punderson, J.O., and Leverett, G.F.: the effect of solvents on high molecular weight, stable acetal resins. J. Appl. Polym. Sci. 1, 185 (1959).Google Scholar
30.Vogl, O.: The polymerization of aldehydes. J. Polym. Sci. 46, 261 (1960).Google Scholar
31.Vogl, O.: Polymerization of higher aldehydes. III. Elastomeric polyacetaldehyde. J. Polym. Sci. A, Polym. Chem. 2, 4591 (1964).Google Scholar
32.Vogl, O.: Polymerization of higher aldehydes. IV. Crystalline isotactic polyaldehydes: anionic and cationic polymerization. J. Polym. Sci. A, Polym. Chem. 2, 4607 (1964).Google Scholar
33.Vogl, O.: Polymerization of higher aldehydes. V. End-capped crystalline isotactic polyaldehydes: characterization and properties. J. Polym. Sci. A, Polym. Chem. 2, 4621 (1964).Google Scholar
34.Vogl, O. and Bryant, W.M.D.: Polymerization of higher aldehydes. VI. Mechanism of aldehyde polymerization. J. Polym. Sci. A, Polym. Chem. 2, 4633 (1964).Google Scholar
35.Brame, E.G. Jr., Sudol, R.S., and Vogl, O.: Polymerization of higher aldehydes. VII. Tacticity of elastomeric polyacetaldehyde. J. Polym. Sci. A, Polym. Chem. 2, 5337 (1964).Google Scholar
36.Aso, C., Tagami, S., and Kunitake, T.: Polymerization of aromatic aldehydes. II. Cationic cyclopolymerization of phthalaldehyde. J. Polym. Sci. A, Polym. Chem. 7, 497 (1969).Google Scholar
37.Aso, C. and Tagami, S.: Polymerization of aromatic aldehydes. III. The cyclopolymerization of phthalaldehyde and the structure of the polymer. Macromolecules 2, 414 (1969).Google Scholar
38.Aso, C.: Cyclopolymerization of bifunctional monomers. Pure Appl. Chem. 23, 287 (1970).Google Scholar
39.Tagami, S., Kagiyama, T., and Aso, C.: Polymerization of aromatic aldehydes. VII. Cyclopolymerization of o-formylphenylacetaldehyde and formation of a cyclic trimer. Polym. J. 2, 101 (1971).Google Scholar
40.Kaitz, J.A., Diensendruck, C.E., and Moore, J.S.: End group characterization of poly(phthalaldehyde): surprising discovery of a reversible, cationic macrocyclization mechanism. J. Am. Chem. Soc. 135, 12755 (2013).CrossRefGoogle ScholarPubMed
41.Kaitz, J.A., Diensendruck, C.E., and Moore, J.S.: Dynamic covalent macrocyclic poly(phthalaldehyde)s: scrambling cyclic homopolymer mixtures produces multi-block and random cyclic copolymers. Macromolecules 46, 8121 (2013).CrossRefGoogle Scholar
42.Kaitz, J.A., Diesendruck, C.E., and Moore, J.S.: Divergent macrocyclization mechanisms in the cationic initiated polymerization of ethyl glyoxylate. Macromolecules 47, 3603 (2014).Google Scholar
43.Sagi, A., Weinstain, R., Karton, N., and Shabat, D.: Self-immolative polymers. J. Am. Chem. Soc. 130, 5434 (2008).Google Scholar
44.Weinstain, R., Sagi, A., Karton, N., and Shabat, D.: Self-immolative comb-polymers: multiple-release of side-reporters by a single stimulus event. Chem. Eur. J. 14, 6857 (2008).Google Scholar
45.Weinstain, R., Baran, P.S., and Shabat, D.: Activity-linked labeling of enzymes by self-immolative polymers. Bioconjugate Chem. 20, 1783 (2009).Google Scholar
46.Esser-Kahn, A.P., Sottos, N.R., White, S.R., and Moore, J.S.: Programmable microcapsules from self-immolative polymers. J. Am. Chem. Soc. 132, 10266 (2010).CrossRefGoogle ScholarPubMed
47.de Gracia Lux, C., McFearin, C.L., Joshi-Barr, S., Sankaranarayanan, J., Fomina, N., and Almutairi, A.: Single UV or near IR triggering event leads to polymer degradation into small molecules. ACS Macro Lett. 1, 922 (2012).Google Scholar
48.Peterson, G.I., Church, D.C., Yakelis, N.A., and Boydston, A.J.: 1,2-Oxazine linker as a thermal trigger for self-immolative polymers. Polymer 55, 5980 (2014).CrossRefGoogle Scholar
49.Okada, H., Tanaka, K., Ohashi, W., and Chujo, Y.: Photo-triggered molecular release based on auto-degradable polymer-containing organic-inorganic hybrids. Bioorg. Med. Chem. 22, 3435 (2014).CrossRefGoogle ScholarPubMed
50.DeWit, M.A., Beaton, A., and Gillies, E.R.: A reduction sensitive cascade biodegradable linear polymer. J. Polym. Sci. A, Polym. Chem. 48, 3977 (2010).CrossRefGoogle Scholar
51.DeWit, M.A. and Gillies, E.R.: A cascade biodegradable polymer based on alternating cyclization and elimination reactions. J. Am. Chem. Soc. 131, 18327 (2009).Google Scholar
52.Chen, E.K.Y., McBride, R.A., and Gillies, E.R.: Self-immolative polymers containing rapidly cyclizing spacers: toward rapid depolymerization rates. Macromolecules 45, 7364 (2012).Google Scholar
53.McBride, R.A. and Gillies, E.R.: Kinetics of self-immolative degradation in a linear polymeric system: demonstrating the effect of chain length. Macromolecules 46, 5157 (2013).Google Scholar
54.Wong, A.D., Gungor, T.M., and Gillies, E.R.: Multi-responsive azobenzene end-cap for self-immolative polymers. ACS Macro Lett. 3, 1191 (2014).Google Scholar
55.DeWit, M.A., Nazemi, A., Karamdoust, S., Beaton, A., and Gillies, E.R.: Design, synthesis and assembly of self-immolative linear block copolymers. ACS Symp. Ser. 1066, 9 (2011).Google Scholar
56.Robbins, J.S., Schmid, K.M., and Phillips, S.T.: Effects of electronics, aromaticity, and solvent polarity on the rate of azaquinone–methide-mediated depolymerization of aromatic carbamate oligomers. J. Org. Chem. 78, 3159 (2013).Google Scholar
57.Lewis, G.G., Robbins, J.S., and Phillips, S.T.: Phase-switching depolymerizable poly(carbamate) oligomers for signal amplification in quantitative time-based assays. Macromolecules 46, 5177 (2013).Google Scholar
58.Liu, G., Wang, X., Hu, J., Zhang, G., and Liu, S.: Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions. J. Am. Chem. Soc. 136, 7492 (2014).Google Scholar
59.Erez, R., Shabat, D.: The azaquinone-methide elimination: comparison study of 1,6- and 1,4-eliminations under physiological conditions. Org. Biomol. Chem. 6, 2669 (2008).Google Scholar
60.Fomina, N., McFearin, C., Sermsakdi, M., Edigin, O., and Almutairi, A.: UV and near-IR triggered release from polymeric nanoparticles. J. Am. Chem. Soc. 132, 9540 (2010).CrossRefGoogle ScholarPubMed
61.Fomina, N., McFearin, C.L., Sermsakdi, M., Morachis, J.M., and Almutairi, A.: Low power, biologically benign NIR light triggers polymer disassembly. Macromolecules 44, 8590 (2011).CrossRefGoogle ScholarPubMed
62.de Gracia Lux, C., Joshi-Barr, S., Nguyen, T., Mahmoud, E., Schopf, E., Fomina, N., and Almutairi, A.: Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J. Am. Chem. Soc. 134, 15758 (2012).Google Scholar
63.de Gracia Lux, C. and Almutairi, A.: Intramolecular cyclization for stimuli-controlled depolymerization of polycaprolactone particles leading to disassembly and payload release. ACS Macro Lett. 2, 432 (2013).Google Scholar
64.Olejniczak, J., Sankaranarayanan, J., Viger, M.L., and Almutairi, A.: Higher efficiency two-photon degradable copolymer for remote controlled release. ACS Macro Lett. 2, 683 (2013).Google Scholar
65.Zhang, Y., Ma, L., Deng, X., and Cheng, J.: Trigger-responsive chain-shattering polymers. Polym. Chem. 4, 224 (2013).Google Scholar
66.Zhang, Y., Yin, Q., Yin, L., Ma, L., Tang, L., and Cheng, J.: Chain-shattering polymeric therapeutics with on-demand drug-release capability. Angew. Chem. Int. Ed. 52, 6435 (2013).Google Scholar
67.Seo, W. and Phillips, S.T.: Patterned plastics that change physical structure in response to applied chemical signals. J. Am. Chem. Soc. 132, 9234 (2010).Google Scholar
68.DiLauro, A.M., Robbins, J.S., and Phillips, S.T.: Reproducible and scalable synthesis of end-cap-functionalized depolymerizable poly(phthalaldehydes). Macromolecules 46, 2963 (2013).Google Scholar
69.Winter, J.D., Dove, A.P., Knoll, A., Gerbaux, P., Dubois, P., and Coulembier, O.: Control over molar mass, dispersity, end-groups and kinetics in cyclopolymerization of ortho-phthalaldehyde: adapted choice of phosphazene organocatalyst. Polym. Chem. 5, 706 (2014).CrossRefGoogle Scholar
70.Kaitz, J.A. and Moore, J.S.: Functional phthalaldehyde polymers by copolymerization with substituted benzaldehydes. Macromolecules 46, 608 (2013).CrossRefGoogle Scholar
71.Kaitz, J.A., Possanza, C.M., Song, Y., Diesendruck, C.E., Spiering, A.J.H., Meijer, E.W., and Moore, J.S.: Depolymerizable, adaptive supramolecular polymer nanoparticles and networks. Polym. Chem. 5, 3788 (2014).Google Scholar
72.Tsuda, M., Hata, M., Nishida, R., and Oikawa, S.: Acid-catalyzed degradation mechanism of poly(phthalaldehyde): unzipping reaction of chemical amplification resist. J. Polym. Sci. A, Polym. Chem. 35, 77 (1997).Google Scholar
73.Frederick, D.S., Cogan, H.D., and Marvel, C.S.: The reaction between sulfur dioxide and olefins. Cyclohexene. J. Am. Chem. Soc. 56, 1815 (1934).Google Scholar
74.Hunt, M. and Marvel, C.S.: The reaction between sulfur dioxide and olefins. II. Propylene. J. Am. Chem. Soc. 57, 1691 (1935).Google Scholar
75.Ryden, L.L. and Marvel, C.S.: The reaction between sulfur dioxide and olefins. III. Higher olefins and some limitations of the reaction. J. Am. Chem. Soc. 57, 2311 (1935).Google Scholar
76.Shinoda, T., Nishiwaki, T., and Inoue, H.: Decomposition of poly(4-hydroxystyrene sulfone) in alkaline aqueous solutions. J. Polym. Sci. A, Polym. Chem. 38, 2760 (2000).Google Scholar
77.Lobez, J.M. and Swager, T.M.: Disassembly of elastomers: poly(olefin sulfone)−silicones with switchable mechanical properties. Macromolecules 43, 10422 (2010).Google Scholar
78.Bowmer, T.N. and O'Donnell, J.H.: Radiation degradation of poly(olefin Sulfone)s: a volatile product study. J. Macromol. Sci. A, Pure Appl. Chem. 17, 243 (1982).Google Scholar
79.Brown, J.R. and O'Donnell, J.H.: The degradation of poly(butene-1 sulfone) during γ irradiation. Macromolecules 3, 265 (1970).Google Scholar
80.Brown, J.R. and O'Donnell, J.H.: γ Radiolysis of poly(butene-1 sulfone) and poly(hexane-1 sulfone). Macromolecules 5, 109 (1972).Google Scholar
81.Ayscough, P.B., Ivin, K.J., and O'Donnell, J.H.: Electron spin resonance spectra of γ-irradiated sulphones and polysulphones. J. Chem. Soc. Faraday Trans. 61, 1110 (1965).Google Scholar
82.Bowden, M.J. and Thompson, L.F.: Electron irradiation of poly(olefin sulfones). Application to electron beam resists. J. Appl. Polym. Sci. 17, 3211 (1973).Google Scholar
83.Yaguchi, H. and Sasaki, T.: Photoinduced depolymerization of poly(olefin sulfone)s possessing photobase generating groups in the side chain. Macromolecules 40, 9332 (2007).Google Scholar
84.Sasaki, T. and Yaguchi, H.: Photoinduced unzipping depolymerization of poly(olefin sulfone)s possessing photobase generator and base amplifier. J. Polym. Sci. A, Polym. Chem. 47, 602 (2009).Google Scholar
85.Thompson, L.F. and Bowden, M.J.: A new family of positive electron beam resists—poly(Olefin Sulfones). J. Electrochem. Soc. 120, 1722 (1973).Google Scholar
86.Gipstein, E., Moreau, W., Chiu, G., and Need, O.U.: The synthesis and evaluation of cyclic olefin sulfone copolymers and terpolymers as electron beam resists. J. Appl. Polym. Sci. 21, 677 (1977).Google Scholar
87.Bowden, M.J. and Chandross, E.A.: Poly(Vinyl Arene Sulfones) as novel positive photoresists. J. Electrochem. Soc. 122, 1370 (1975).Google Scholar
88.Willson, C.G.: Organic resist materials—theory and chemistry, in Introduction to Microlithography—Theory, Materials, and Processing, edited by Thompson, L.F., Wilson, C.G. and Bowden, M.J. (American Chemical Society, Washington, D.C., 1983), pp. 126.Google Scholar
89.Willson, C.G., Taylor, G.N., and Wolf, T.M.: Oxygen plasma removal of thin polymer films. Polym. Eng. Sci. 20, 1087 (1980).Google Scholar
90.Ito, H. and Willson, C.G.: Chemical amplification in the design of dry developing resist materials. Polym. Eng. Sci. 23, 1012 (1983).Google Scholar
91.Willson, C.G., Ito, H., Fréchet, J.M.J., Tessier, T.G., and Houlihan, F.M.: Approaches to the design of radiation-sensitive polymeric imaging systems with improved sensitivity and resolution. J. Electrochem. Soc. 133, 181 (1986).Google Scholar
92.Ito, H. and Schwalm, R.: Thermally developable, positive resist systems with high sensitivity. J. Electrochem. Soc. 136, 241 (1989).Google Scholar
93.Ito, H., Ueda, M. and Renaldo, A.F.: Thermally developable, positive tone, oxygen RIE barrier resist for bilayer lithography. J. Electrochem. Soc. 136, 245 (1989).Google Scholar
94.Coulembier, O., Knoll, A., Pires, D., Gotsmann, B., Duerig, U., Frommer, J., Miller, R.D., Dubois, P., and Hedrick, J.L.: Probe-based nanolithography: self-amplified depolymerization media for dry lithography. Macromolecules 43, 572 (2010).Google Scholar
95.Knoll, A.W., Pires, D., Coulembier, O., Dubois, P., Hedrick, J.L., Frommer, J., and Duerig, U.: Probe-based 3-D nanolithography using self-amplified depolymerization polymers. Adv. Mater. 22, 3361 (2010).Google Scholar
96.Lobez, J.M. and Swager, T.M.: radiation detection: resistivity responses in functional poly(Olefin Sulfone)/Carbon nanotube composites. Angew. Chem. Int. Ed. 49, 95 (2010).Google Scholar
97.Grassie, N. and Macfarlane, I.G.: The thermal degradation of polysiloxanes—I. Poly(dimethylsiloxane). Eur. Polym. J. 14, 875 (1978).Google Scholar
98.Patnode, W. and Wilcock, D.F.: Methylpolysiloxanes. J. Am. Chem. Soc. 68, 358 (1946).CrossRefGoogle Scholar
99.Cademartiri, L. and Ozin, G.A.: Concepts of Nanochemistry (Wiley-VCH, Weinheim, 2009), pp. 113139.Google Scholar
100.Blencowe, C.A., Russell, A.T., Greco, F., Hayes, W., and Thornthwaite, D.W.: Self-immolative linkers in polymeric delivery systems. Polym. Chem. 2, 773 (2011).Google Scholar
101.Esser-Kahn, A.P., Odom, S.A., Sottos, N.R., White, S.R., and Moore, J.S.: triggered release from polymer capsules. Macromolecules 44, 5539 (2011).Google Scholar
102.DiLauro, A.M., Abbaspourrad, A., Weitz, D.A., and Phillips, S.T.: Stimuli-responsive core–shell microcapsules with tunable rates of release by using a depolymerizable poly(phthalaldehyde) membrane. Macromolecules 46, 3309 (2013).Google Scholar
103.Fan, B., Trant, J.F., Wong, A.D., and Gillies, E.R.: Polyglyoxylates: a versatile class of triggerable self-immolative polymers from readily accessible monomers. J. Am. Chem. Soc. 136, 10116 (2014).Google Scholar
104.Diesendruck, C.E., Peterson, G.I., Kulik, H.J., Kaitz, J.A., Mar, B.D., May, P.A., White, S.R., Martinez, T.J., Boydston, A.J., and Moore, J.S.: Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat. Chem. 6, 623 (2014).CrossRefGoogle ScholarPubMed
105.Zhang, H., Yeung, K., Robbins, J.S., Pavlick, R.A., Wu, M., Liu, R., Sen, A., and Phillips, S.T.: Self-powered microscale pumps based on analyte-initiated depolymerization reactions. Angew. Chem. Int. Ed. 51, 2400 (2012).Google Scholar
106.DiLauro, A.M., Zhang, H., Baker, M.S., Wong, F., Sen, A., and Phillips, S.T.: Accessibility of responsive end-caps in films composed of stimuli-responsive, depolymerizable poly(phthalaldehydes). Macromolecules 46, 7257 (2013).CrossRefGoogle Scholar
107.Lopez Hernandez, H., Kang, S.-K., Lee, O.P., Hwang, S.-W., Kaitz, J.A., Inci, B., Park, C.W., Chung, S., Sottos, N.R., Moore, J.S., Rogers, J.A., and White, S.R.: Triggered transience of metastable poly(phthalaldehyde) for transient electronics. Adv. Mater. 26, 7637 (2014).Google Scholar
108.Holzner, F., Kuemin, C., Paul, P., Hedrick, J.L., Wolf, H., Spencer, N.D., Duergi, U., and Knoll, A.W.: Directed placement of gold nanorods using a removable template for guided assembly. Nano Lett. 11, 3957 (2011).CrossRefGoogle ScholarPubMed
109.Vogt, A.P., Winter, J.D., Krolla-Sidenstein, P., Geckle, U., Coulembier, O., and Barner-Kowollik, C.: Polyphthalaldehyde-block-polystyrene as a nanochannel template. J. Mater. Chem. B 2, 3578 (2014).Google Scholar
110.Olah, M.G., Robbins, J.S., Baker, M.S., and Phillips, S.T.: End-capped poly(benzyl ethers): acid and base stable polymers that depolymerize rapidly from head-to-tail in response to specific applied signals. Macromolecules 46, 5924 (2013).CrossRefGoogle Scholar
111.Vairon, J.P., Muller, E., and Bunel, C.: The ionic polymerizations of methyl glyoxylate. Macromol. Symp. 85, 307 (1994).Google Scholar
112.Brachais, C.H., Huguet, J., and Bunel, C.: Synthesis, characterization and stabilization of poly(methyl glyoxylate). Polymer 38, 4959 (1997).Google Scholar
113.Brachais, C.H., Duclos, R., Vaugelade, C., Huguet, J., Capelle-Hue, M.L., and Bunel, C.: Poly(methyl glyoxylate), a biodegradable polymeric material for new drug delivery systems. Int. J. Pharm. 169, 23 (1998).Google Scholar
114.Burel, F., Rossignol, L., Pontvianne, P., Hartman, J., Couesnon, N., and Bunel, C.: Synthesis and characterization of poly(ethyl glyoxylate)––a new potentially biodegradable polymer. e-Polymers 3, 407 (2003).Google Scholar
115.Belloncle, B., Burel, F., Oulyadi, H., and Bunel, C.: Study of the in vitro degradation of poly(ethyl glyoxylate). Polym. Degrad. Stab. 93, 1151 (2008).Google Scholar
116.Kaitz, J.A. and Moore, J.S.: Copolymerization of o-phthalaldehyde and ethyl Glyoxylate: cyclic macromolecules with alternating sequence and tunable thermal properties. Macromolecules 47, 5509 (2014).Google Scholar