Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T17:36:38.778Z Has data issue: false hasContentIssue false

Self-assembly of nanostructures with multiferroic components using nucleic acid linkers

Published online by Cambridge University Press:  28 December 2016

Ferman A. Chavez*
Affiliation:
Department of Chemistry, Oakland University, Rochester, MI 48309-4401, USA
Gopalan Srinivasan*
Affiliation:
Department of Physics, Oakland University, Rochester, MI 48309-4401, USA
*
Address all correspondences to either F. A. Chavez at chavez@oakland.edu or G. Srinivasan at srinivas@oakland.edu
Address all correspondences to either F. A. Chavez at chavez@oakland.edu or G. Srinivasan at srinivas@oakland.edu
Get access

Abstract

Self-assembly of multiferroic oxide composites by chemical and biochemical methodology is discussed. The approach involves covalently attaching organic functional groups or oligomeric DNA/RNA to the nanoparticles (NPs). The organic functional groups are only reactive toward functional groups located on different NPs. Using oligomeric DNA/RNA, one could program NPs to only interact with particles possessing complementary DNA/RNA. We have applied both concepts to the assembly of nanostructures with ferrites for the ferromagnetic phase and barium titanate for the ferroelectric phase. The assembled core–shell particles and superstructures obtained in a magnetic field show evidence for strong interactions between the magnetic and ferroelectric subsystems.

Type
Functional Oxides Prospective Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., and Faupel, F.: Advances in top-down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv. Colloid Interface Sci. 170, 2 (2012).CrossRefGoogle ScholarPubMed
2. Xu, L.G., Ma, W., Wang, L.B., Xu, C.L., Kuang, H., and Kotov, N.A.: Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability. Chem. Soc. Rev. 42, 3114 (2013).Google Scholar
3. Pershina, A.G., Sazonov, A.E., and Filimonov, V.D.: Magnetic nanoparticles–DNA interactions: design and applications of nanobiohybrid systems. Russ. Chem. Rev. 83, 299 (2014).Google Scholar
4. Bao, N.Z. and Gupta, A.: Self-assembly of superparamagnetic nanoparticles. J. Mater. Res. 26, 111 (2011).Google Scholar
5. Barrow, S.J., Funston, A.M., Wei, X.Z., and Mulvaney, P.: DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures. Nano Today 8, 138 (2013).Google Scholar
6. Huang, M.H. and Thoka, S.: Formation of supercrystals through self-assembly of polyhedral nanocrystals. Nano Today 10, 81 (2015).CrossRefGoogle Scholar
7. Li, H.Y., Carter, J.D., and LaBean, T.H.: Nanofabrication by DNA self-assembly. Mater. Today 12, 24 (2009).Google Scholar
8. Tan, L.H., Xing, H., and Lu, Y.: DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles. Acc. Chem. Res. 47, 1881 (2014).Google Scholar
9. Schroeder, A., Heller, D.A., Winslow, M.M., Dahlman, J.E., Pratt, G.W., Langer, R., Jacks, T., and Anderson, D.G.: Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 12, 39 (2012).Google Scholar
10. Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl. Phys. 103, 031101 (2008).Google Scholar
11. Sun, N.X. and Srinivasan, G.: Voltage control of magnetism in multiferroic heterostructures and devices. SPIN 02, 124004 (2012).Google Scholar
12. Schileo, G.: Recent developments in ceramic multiferroic composites based on core/shell and other heterostructures obtained by sol-gel routes. Progr. Solid State Chem. 41, 87 (2013).Google Scholar
13. Bai, F.M., Zhang, H.W., Li, J.F., and Viehland, D.: Magnetic and magnetoelectric properties of as-deposited and annealed BaTiO3–CoFe2O4 nanocomposite thin films. J. Phys. D: Appl. Phys. 43, 285002 (2010).Google Scholar
14. Brosseau, C., Castel, V., and Potel, M.: Controlled extrinsic magnetoelectric coupling in BaTiO3/Ni nanocomposites: effect of compaction pressure on interfacial anisotropy. J. Appl. Phys. 108, 024306 (2010).Google Scholar
15. Wang, H.M., Pan, E., and Chen, W.Q.: Large multiple resonance of magnetoelectric effect in a multiferroic composite cylinder with an imperfect interface. Phys. Status Solidi B 248, 2180 (2011).Google Scholar
16. Sreenivasulu, G., Popov, M., Chavez, F.A., Hamilton, S.L., Lehto, P.R., and Srinivasan, G.: Controlled self-assembly of multiferroic core–shell nanoparticles exhibiting strong magneto-electric effects. Appl. Phys. Lett. 104, 052901 (2014).CrossRefGoogle Scholar
17. Popov, M., Sreenivasulu, G., Petrov, V.M., Chavez, F.A., and Srinivasan, G.: High frequency magneto-dielectric effects in self-assembled ferrite–ferroelectric core–shell nanoparticles. AIP Adv. 4, 097117 (2014).Google Scholar
18. Sreenivasulu, G., Petrov, V.M., Chavez, F.A., and Srinivasan, G.: Superstructures of self-assembled multiferroic core–shell nanoparticles and studies on magneto-electric interactions. Appl. Phys. Lett. 105, 072905 (2014).CrossRefGoogle Scholar
19. Srinivasan, G., Popov, M., Sreenivasulu, G., Petrov, V.M., and Chavez, F.A.: Millimeter-wave magneto-dielectric effects in self-assembled ferrite–ferroelectric core–shell nanoparticles. J. Appl. Phys. 117, 17A309 (2015).Google Scholar
20. Srinivasan, G., Sreenivasulu, G., Benoit, C., Petrov, V.M., and Chavez, F.: Magnetic field directed assembly of superstructures of ferrite-ferroelectric core–shell nanoparticles and studies on magneto-electric interactions. J. Appl. Phys. 117, 17B904 (2015).Google Scholar
21. Guo, Y., Hu, Y., and Deng, Z.T.: DNA directed self-assembly of fluorescent colloidal semiconductor quantum dots and plasmonic metal nanoparticles heterogeneous nanomaterials. Chin. J. Chem. 34, 259 (2016).Google Scholar
22. Ma, Y.R., Yang, X.D., Wei, Y.R., and Yuan, Q.: Applications of DNA nanotechnology in synthesis and assembly of inorganic nanomaterials. Chin. J. Chem. 34, 291 (2016).Google Scholar
23. Ravan, H., Kashanian, S., Sanadgol, N., Badoei-Dalfard, A., and Karami, Z.: Strategies for optimizing DNA hybridization on surfaces. Anal. Biochem. 444, 41 (2014).Google Scholar
24. Li, L.L., Wu, P.W., Hwang, K., and Lu, Y.: An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc. 135, 2411 (2013).CrossRefGoogle ScholarPubMed
25. Kumar, A., Hwang, J.H., Kumar, S., and Nam, J.M.: Tuning and assembling metal nanostructures with DNA. Chem. Commun. (Camb.) 49, 2597 (2013).Google Scholar
26. Banchelli, M., Nappini, S., Montis, C., Bonini, M., Canton, P., Berti, D., and Baglioni, P.: Magnetic nanoparticle clusters as actuators of ssDNA release. Phys. Chem. Chem. Phys. 16, 10023 (2014).CrossRefGoogle ScholarPubMed
27. Robinson, I., Tung le, D., Maenosono, S., Walti, C., and Thanh, N.T.: Synthesis of core–shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale 2, 2624 (2010).Google Scholar
28. Pita, M., Abad, J.M., Vaz-Dominguez, C., Briones, C., Mateo-Marti, E., Martin-Gago, J.A., Morales Mdel, P., and Fernandez, V.M.: Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. J. Colloid Interface Sci. 321, 484 (2008).CrossRefGoogle ScholarPubMed
29. Kitamura, N., Nakai, R., Kohda, H., Furuta-Okamoto, K., and Iwata, H.: Labeling of islet cells with iron oxide nanoparticles through DNA hybridization for highly sensitive detection by MRI. Bioorgan. Med. Chem. 21, 7175 (2013).CrossRefGoogle ScholarPubMed
30. Shen, H., Wang, Y., Yang, H., and Jiang, J.: Covalent immobilization of oligo-DNA on the surface of magnetic nanoparticles and surface-enhanced Raman scattering study. Chin. Sci. Bull. 48, 2698 (2003).CrossRefGoogle Scholar
31. Wang, F., Shen, H., Feng, J., and Yang, H.: PNA-modified magnetic nanoparticles and their hybridization with single-stranded DNA target: surface enhanced Raman scatterings study. Microchim. Acta 153, 15 (2006).Google Scholar
32. Santra, S., Yapec, R., Theodoropoulou, N., Dobson, J., Hebard, A., and Tan, W.: Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17, 2900 (2001).Google Scholar
33. Zhu, N., Zhang, A., He, P., and Fang, Y.: DNA hybridization at magnetic nanoparticles with electrochemical stripping detection. Electroanalysis 16, 1925 (2004).Google Scholar
34. Medley, C.D., Smith, J.E., Wigman, L.S., and Chetwyn, N.P.: A DNA-conjugated magnetic nanoparticle assay for assessing genotoxicity. Anal Bioanal. Chem 404, 2233 (2012).Google Scholar
35. Wagner, K., Kautz, A., Röder, M., Schwalbe, M., Pachmann, K., Clement, J.H., and Schnabelrauch, M.: Synthesis of oligonucleotide-functionalized magnetic nanoparticles and study on their in vitro cell uptake. Appl. Organometal. Chem. 18, 514 (2004).CrossRefGoogle Scholar
36. Zhu, X., Zhou, X., and Xing, D.: Nano-magnetic primer based electrochemiluminescence-polymerase chain reaction (NMPE-PCR) assay. Biosens. Bioelectron. 31, 463 (2012).Google Scholar
37. Robinson, D.B., Persson, H.H., Zeng, H., Li, G., Pourmand, N., Sun, S., and Wang, S.X.: DNA-functionalized MFe2O4 (M = Fe, Co, or Mn) nanoparticles and their hybridization to DNA-functionalized surfaces. Langmuir 21, 3096 (2005).Google Scholar
38. Yin, M., Li, Z., Liu, Z., Ren, J., Yang, X., and Qu, X.: Photosensitizer-incorporated G-quadruplex DNA-functionalized magnetofluorescent nanoparticles for targeted magnetic resonance/fluorescence multimodal imaging and subsequent photodynamic therapy of cancer. Chem. Commun. 48, 6556 (2012).Google Scholar
39. Fuentes, M., Mateo, C., Rodriguez, A., Casqueiro, M., Tercero, J.C., Riese, H.H., Fernandez-Lafuente, R., and Guisan, J.M.: Detecting minimal traces of DNA using DNA covalently attached to superparamagnetic nanoparticles and direct PCR-ELISA. Biosens. Bioelectron. 21, 1574 (2006).Google Scholar
40. Amagliani, G., Omiccioli, E., Campo, A., Bruce, I.J., Brandi, G., and Magnani, M.: Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples. J. Appl. Microbiol. 100, 375 (2006).Google Scholar
41. Lin, J.Y. and Chen, Y.C.: Functional magnetic nanoparticle-based trapping and sensing approaches for label-free fluorescence detection of DNA. Talanta 86, 200 (2011).Google Scholar
42. del Campo, A., Sena, T., Lellouchec, J.-P., and Brucea, I.J.: Multifunctional magnetite and silica–magnetite nanoparticles: synthesis, surface activation and applications in life sciences. J. Magn. Magn. Mater. 293, 33 (2005).Google Scholar
43. Nie, L.B., Wang, X.L., Li, S., and Chen, H.: Amplification of fluorescence detection of DNA based on magnetic separation. Anal. Sci. 25, 1327 (2009).Google Scholar
44. Josephson, L., Perez, J.M., and Weissleder, R.: Magnetic nanosensors for the detection of oligonucleotide sequences. Angew. Chem. Int. Ed. Engl. 40, 3204 (2001).Google Scholar
45. Yigit, M.V., Mazumdar, D., Kim, H.K., Lee, J.H., Odintsov, B., and Lu, Y.: Smart “turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. Chembiochem.: Eur. J. Chem. Biol. 8, 1675 (2007).CrossRefGoogle ScholarPubMed
46. Grimm, J., Perez, J.M., Josephson, L., and Weissleder, R.: Novel nanosensors for rapid analysis of telomerase activity. Cancer Res. 64, 639 (2004).Google Scholar
47. Osterberg, F.W., Rizzi, G., Zardan Gomez de la Torre, T., Stromberg, M., Stromme, M., Svedlindh, P., and Hansen, M.F.: Measurements of Brownian relaxation of magnetic nanobeads using planar Hall effect bridge sensors. Biosens. Bioelectron. 40, 147 (2013).Google Scholar
48. Park, S.Y., Lytton-Jean, A.K., Lee, B., Weigand, S., Schatz, G.C., and Mirkin, C.A.: DNA-programmable nanoparticle crystallization. Nature 451, 553 (2008).Google Scholar
49. Macfarlane, R.J., Jones, M.R., Senesi, A.J., Young, K.L., Lee, B., Wu, J., and Mirkin, C.A.: Establishing the design rules for DNA-mediated programmable colloidal crystallization. Angew. Chem. Int. Ed. Engl. 49, 4589 (2010).Google Scholar
50. Lu, F., Yager, K.G., Zhang, Y.G., Xin, H.L., and Gang, O.: Superlattices assembled through shape-induced directional binding. Nat. Commun. 6, 6912 (2015).Google Scholar
51. Seo, S.E., Wang, M.X., Shade, C.M., Rouge, J.L., Brown, K.A., and Mirkin, C.A.: Modulating the bond strength of DNA–nanoparticle superlattices. ACS Nano 10, 1771 (2016).Google Scholar
52. Cutler, J.I., Zheng, D., Xu, X., Giljohann, D.A., and Mirkin, C.A.: Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Lett. 10, 1477 (2010).Google Scholar
53. Thomson, D.A., Tee, E.H., Tran, N.T., Monteiro, M.J., and Cooper, M.A.: Oligonucleotide and polymer functionalized nanoparticles for amplification-free detection of DNA. Biomacromolecules 13, 1981 (2012).CrossRefGoogle ScholarPubMed
54. Kaittanis, C., Boukhriss, H., Santra, S., Naser, S.A., and Perez, J.M.: Rapid and sensitive detection of an intracellular pathogen in human peripheral leukocytes with hybridizing magnetic relaxation nanosensors. PLoS ONE 7, e35326 (2012).Google Scholar
55. Sreenivasulu, G., Lochbiler, T.A., Panda, M., Srinivasan, G., and Chavez, F.A.: Self-assembly of multiferroic core–shell particulate nanocomposites through DNA–DNA hybridization and magnetic field directed assembly of superstructures. AIP Adv. 6, 045202 (2016).Google Scholar
56. Shukla, G.C., Haque, F., Tor, Y., Wilhelmsson, L.M., Toulme, J.J., Isambert, H., Guo, P., Rossi, J.J., Tenenbaum, S.A., and Shapiro, B.A.: A boost for the emerging field of RNA nanotechnology. ACS Nano 5, 3405 (2011).Google Scholar
57. Grabow, W.W. and Jaeger, L.: RNA self-assembly and RNA nanotechnology. Acc. Chem. Res. 47, 1871 (2014).CrossRefGoogle ScholarPubMed
58. Sharma, A., Haque, F., Pi, F., Shlyakhtenko, L.S., Evers, B.M., and Guo, P.: Controllable self-assembly of RNA dendrimers. Nanomed.: Nanotechnol. Biol. Med. 12, 835 (2016).Google Scholar
59. Carter, C.J., Dolska, M., Owczarek, A., Ackerson, C.J., Eaton, B.E., and Feldheim, D.L.: In vitro selection of RNA sequences capable of mediating the formation of iron oxide nanoparticles. J. Mater. Chem. 19, 8320 (2009).Google Scholar
60. Liu, J., Guo, S.C., Cinier, M., Shlyakhtenko, L.S., Shu, Y., Chen, C.P., Shen, G., and Guo, P.X.: Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging. ACS Nano 5, 237 (2011).Google Scholar
61. Afonin, K.A., Bindewald, E., Yaghoubian, A.J., Voss, N., Jacovetty, E., Shapiro, B.A., and Jaeger, L.: In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol. 5, 676 (2010).Google Scholar
62. Grabow, W.W., Zakrevsky, P., Afonin, K.A., Chworos, A., Shapiro, B.A., and Jaeger, L.: Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett. 11, 878 (2011).Google Scholar
63. Markham, N.R. and Zuker, M.: UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3 (2008).CrossRefGoogle ScholarPubMed
64. Matveeva, O.V., Kang, Y., Spiridonov, A.N., Saetrom, P., Nemtsov, V.A., Ogurtsov, A.Y., Nechipurenko, Y.D., and Shabalina, S.A.: Optimization of duplex stability and terminal asymmetry for shRNA design. PLoS ONE 5, e10180 (2010).Google Scholar
65. Wang, D. and Ko, H.H.: Magnetic-assisted self-assembly of rectangular shaped parts. Sens. Actuators 151, 195 (2009).CrossRefGoogle Scholar
66. Smoukov, S.K., Gangwal, S., Marquez, M., and Velev, O.D.: Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter. 5, 1285 (2009).Google Scholar
67. Zhang, J.X., Dai, J.Y., Chow, C.K., Sun, C.L., Lo, V.C., and Chan, H.L.W.: CoFe2O4∕SrRuO3∕Pb(Zr0.52 Ti0.48)O3CoFe2O4∕SrRuO3∕Pb(Zr0.52 Ti0.48)O3 heteroepitaxial thin film structure. Appl. Phys. Lett. 92, 022901 (2008).Google Scholar
68. Zhang, J.X., Dai, J.Y., Lu, W., and Chan, H.L.W.: Room temperature magnetic exchange coupling in multiferroic BaTiO3/CoFe2O4 magnetoelectric superlattice. J. Mater. Res. 44, 5143 (2009).Google Scholar
69. Liu, R., Zhao, Y., Huang, R., Zhao, Y., and Zhou, H.: Multiferroic ferrite/perovskite oxide core/shell nanostructures. J. Mater. Chem. 20, 10665 (2010).Google Scholar
70. Raidongia, K., Nag, A., Sundaresan, A., and Rao, C.N.R.: Multiferroic and magnetoelectric properties of core–shell CoFe2O4–BaTiO3 nanocomposites. Appl. Phys. Lett. 97, 062904 (2010).Google Scholar