Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T10:13:36.686Z Has data issue: false hasContentIssue false

Temperature-dependent nanoindentation response of materials

Published online by Cambridge University Press:  20 February 2018

Saeed Zare Chavoshi*
Affiliation:
Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
Shuozhi Xu
Affiliation:
California NanoSystems Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-6105, USA
*
Address all correspondence to Saeed Zare Chavoshi at s.zare@imperial.ac.uk
Get access

Abstract

It is of the uttermost interest to understand the mechanical performance and deformation mechanisms contributing to small-scale plasticity of materials in micro/nanoelectromechanical systems at their service temperatures, which are usually above room temperature. In recent years, high-temperature nanoindentation experiments have emerged as a reliable approach to characterize the deformation behavior of materials at the nano and submicron scale. In this review, we highlight the role of the temperature in nanoindentation response of a wide variety of materials, with a particular focus on the thermally-activated deformation mechanisms in crystalline and non-crystalline materials under the indenter, e.g., dislocation processes, shear transformation zone, and phase transformations. A brief survey of the temperature-dependent nanoindentation elastic modulus, hardness, and creep behavior of materials is also provided. We also discuss experimental methods for correctly measuring the mechanical properties of materials at high temperatures.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, W.K., Karpov, E.G., and Park, H.S.: Nano mechanics and materials: theory, multiscale methods and applications (John Wiley & Sons, England, 2006).CrossRefGoogle Scholar
2. Beake, B.D. and Smith, J.F.: High-temperature nanoindentation testing of fused silica and other materials. Philos. Mag. A 82, 21792186 (2002).Google Scholar
3. Wheeler, J., Armstrong, D., Heinz, W., and Schwaiger, R.: High temperature nanoindentation: the state of the art and future challenges. Current Opinion Solid State Mater. Sci. 19, 354366 (2015).CrossRefGoogle Scholar
4. Kang, W., Merrill, M., and Wheeler, J.M.: In situ thermomechanical testing methods for micro/nano-scale materials. Nanoscale 9, 26662688 (2017).Google Scholar
5. Trenkle, J.C., Packard, C.E., and Schuh, C.A.: Hot nanoindentation in inert environments. Rev. Sci. Instrum. 81, 073901073914 (2010).Google Scholar
6. Wheeler, J., Brodard, P., and Michler, J.: Elevated temperature, in situ indentation with calibrated contact temperatures. Philos. Mag. 92, 31283141 (2012).Google Scholar
7. Wheeler, J. and Michler, J.: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 84, 045103045118 (2013).CrossRefGoogle ScholarPubMed
8. Schuh, C.A., Packard, C.E., and Lund, A.C.: Nanoindentation and contact-mode imaging at high temperatures. J. Mater. Res. 21, 725736 (2006).CrossRefGoogle Scholar
9. Packard, C.E., Wheeler, J.M., Trenkle, J.C., and Schuh, C.A.: Nanoindentation: high temperature. In Reference Module in Materials Science and Materials Engineering (Elsevier, 2016).Google Scholar
10. Schuh, C., Mason, J., Lund, A., and Hodge, A.. High temperature nanoindentation for the study of flow defects. in MRS Proceedings (Cambridge University Press, 2004).CrossRefGoogle Scholar
11. Wingert, M.C., Zheng, J., Kwon, S., and Chen, R.: Thermal transport in amorphous materials: a review. Semicond. Sci. Technol. 31, 113003 (2016).Google Scholar
12. Hopkins, P.E., Ding, M., and Poon, J.: Contributions of electron and phonon transport to the thermal conductivity of GdFeCo and TbFeCo amorphous rare-earth transition-metal alloys. J. Appl. Phys. 111, 103533 (2012).CrossRefGoogle Scholar
13. Chavoshi, S.Z., Goel, S., and Luo, X.: Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting. Model. Simul. Mater. Sci. Eng. 24, 015002 (2015).CrossRefGoogle Scholar
14. Chavoshi, S.Z., Goel, S., and Luo, X.: Influence of temperature on the anisotropic cutting behaviour of single crystal silicon: a molecular dynamics simulation investigation. J. Manuf. Process. 23, 201210 (2016).Google Scholar
15. Chavoshi, S.Z. and Luo, X.: An atomistic simulation investigation on chip related phenomena in nanometric cutting of single crystal silicon at elevated temperatures. Comput. Mater. Sci. 113, 110 (2016).Google Scholar
16. Chavoshi, S.Z. and Luo, X.: Atomic-scale characterization of occurring phenomena during hot nanometric cutting of single crystal 3C-SiC. RSC Adv. 6, 7140971424 (2016).Google Scholar
17. Chavoshi, S.Z., Xu, S., and Luo, X.: Dislocation-mediated plasticity in silicon during nanometric cutting: a molecular dynamics simulation study. Mater. Sci. Semicond. Process. 51, 6070 (2016).Google Scholar
18. Chavoshi, S.Z. and Luo, X.: Molecular dynamics simulation study of deformation mechanisms in 3C–SiC during nanometric cutting at elevated temperatures. Mater. Sci. Eng.: A 654, 400417 (2016).Google Scholar
19. Mathur, H., Maier-Kiener, V., and Korte-Kerzel, S.: Deformation in the γ-Mg 17 Al 12 phase at 25–278° C. Acta Mater. 113, 221229 (2016).Google Scholar
20. Shen, L., Wu, Y., Wang, S., and Chen, Z.: Creep behavior of Sn–Bi solder alloys at elevated temperatures studied by nanoindentation. J. Mater. Sci., Mater. Electron. 28, 41144124 (2017).CrossRefGoogle Scholar
21. Kong, X., Kong, X., Sun, F., Sun, F., Yang, M., Yang, M., Liu, Y., and Liu, Y.: High temperature creep properties of low-Ag Cu/Sn-Ag-Cu-Bi-Ni/Cu solder joints by nanoindentation method. Solder. Surf. Mount Technol. 28, 167174 (2016).Google Scholar
22. Rajulapati, K., Biener, M., Biener, J., and Hodge, A.: Temperature dependence of the plastic flow behavior of tantalum. Philos. Mag. Lett. 90, 3542 (2010).Google Scholar
23. Franke, O., Alcalá, J., Dalmau, R., Duan, Z.C., Biener, J., Biener, M., and Hodge, A.M.: Incipient plasticity of single-crystal tantalum as a function of temperature and orientation. Philos. Mag. 95, 18661877 (2015).Google Scholar
24. Taylor, G.I.: The mechanism of plastic deformation of crystals. Part I. Theoretical. Proceedings of the Royal Society of London. Ser. A, Containing Papers Math. Phys. Character 145, 362387 (1934).Google Scholar
25. Durst, K., Backes, B., Franke, O., and Göken, M.: Indentation size effect in metallic materials: modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 25472555 (2006).Google Scholar
26. Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411425 (1998).Google Scholar
27. Qiu, X., Huang, Y., Nix, W., Hwang, K., and Gao, H.: Effect of intrinsic lattice resistance in strain gradient plasticity. Acta Mater. 49, 39493958 (2001).Google Scholar
28. Lund, A.C., Hodge, A.M., and Schuh, C.A.: Incipient plasticity during nanoindentation at elevated temperatures. Appl. Phys. Lett. 85, 13621364 (2004).CrossRefGoogle Scholar
29. Schuh, C., Mason, J., and Lund, A.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617621 (2005).CrossRefGoogle ScholarPubMed
30. Mason, J., Lund, A., and Schuh, C.: Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73, 054102 (2006).Google Scholar
31. Haghshenas, M., Bhakhri, V., Oviasuyi, R., and Klassen, R.: Effect of temperature and strain rate on the mechanisms of indentation deformation of magnesium. MRS Commun. 5, 513518 (2015).Google Scholar
32. Choi, I.-C., Brandl, C., and Schwaiger, R.: Thermally activated dislocation plasticity in body-centered cubic chromium studied by high-temperature nanoindentation. Acta Mater. 140, 107115 (2017).CrossRefGoogle Scholar
33. Primorac, M.-M., Abad, M.D., Hosemann, P., Kreuzeder, M., Maier, V., and Kiener, D.: Elevated temperature mechanical properties of novel ultra-fine grained Cu–Nb composites. Mater. Sci. Eng.: A 625, 296302 (2015).Google Scholar
34. Maier, V., Durst, K., Mueller, J., Backes, B., Höppel, H.W., and Göken, M.: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 14211430 (2011).CrossRefGoogle Scholar
35. Wheeler, J., Maier, V., Durst, K., Göken, M., and Michler, J.: Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature. Mater. Sci. Eng.: A 585, 108113 (2013).Google Scholar
36. Li, N., Liu, L., Chan, K., Chen, Q., and Pan, J.: Deformation behavior and indentation size effect of Au 49 Ag 5.5 Pd 2.3 Cu 26.9 Si 16.3 bulk metallic glass at elevated temperatures. Intermetallics 17, 227230 (2009).CrossRefGoogle Scholar
37. Yang, B., Wadsworth, J., and Nieh, T.-G.: Thermal activation in Au-based bulk metallic glass characterized by high-temperature nanoindentation. Appl. Phys. Lett. 90, 061911 (2007).Google Scholar
38. Argon, A.: Plastic deformation in metallic glasses. Acta Metall. 27, 4758 (1979).Google Scholar
39. Argon, A. and Shi, L.T.: Development of visco-plastic deformation in metallic glasses. Acta Metall. 31, 499507 (1983).CrossRefGoogle Scholar
40. Zallen, R.: The physics of amorphous solids (John Wiley & Sons, Weinheim, 2008).Google Scholar
41. Schuh, C.A., Lund, A.C., and Nieh, T.: New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 58795891 (2004).Google Scholar
42. Packard, C.E., Schroers, J., and Schuh, C.A.: In situ measurements of surface tension-driven shape recovery in a metallic glass. Scr. Mater. 60, 11451148 (2009).Google Scholar
43. Henann, D.L. and Anand, L.: Surface tension-driven shape-recovery of micro/nanometer-scale surface features in a Pt 57.5 Ni 5.3 Cu 14.7 P 22.5 metallic glass in the supercooled liquid region: a numerical modeling capability. J. Mech. Phys. Solids 58, 19471962 (2010).Google Scholar
44. Kumar, G. and Schroers, J.: Write and erase mechanisms for bulk metallic glass. Appl. Phys. Lett. 92, 031901 (2008).Google Scholar
45. Wheeler, J., Raghavan, R., and Michler, J.: In situ SEM indentation of a Zr-based bulk metallic glass at elevated temperatures. Mater. Sci. Eng.: A 528, 87508756 (2011).Google Scholar
46. Bhattacharyya, A., Singh, G., Prasad, K.E., Narasimhan, R., and Ramamurty, U.: On the strain rate sensitivity of plastic flow in metallic glasses. Mater. Sci. Eng.: A 625, 245251 (2015).CrossRefGoogle Scholar
47. Minomura, S. and Drickamer, H.: Pressure induced phase transitions in silicon, germanium and some III–V compounds. J. Phys. Chem. Solids 23, 451456 (1962).Google Scholar
48. Ge, D., Domnich, V., and Gogotsi, Y.: High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation. J. Appl. Phys. 93, 24182423 (2003).Google Scholar
49. Piltz, R., Maclean, J., Clark, S., Ackland, G., Hatton, P., and Crain, J.: Structure and properties of silicon XII: a complex tetrahedrally bonded phase. Phys. Rev. B 52, 40724085 (1995).Google Scholar
50. Ruffell, S., Bradby, J., and Williams, J.: High pressure crystalline phase formation during nanoindentation: amorphous versus crystalline silicon. Appl. Phys. Lett. 89, 091919 (2006).Google Scholar
51. Chavoshi, S.Z., Gallo, S.C., Dong, H., and Luo, X.: High temperature nanoscratching of single crystal silicon under reduced oxygen condition. Mater. Sci. Eng.: A 684, 385393 (2017).CrossRefGoogle Scholar
52. Bhuyan, S., Bradby, J., Ruffell, S., Haberl, B., Saint, C., Williams, J., and Munroe, P.: Phase stability of silicon during indentation at elevated temperature: evidence for a direct transformation from metallic Si-II to diamond cubic Si-I. MRS Commun. 2, 912 (2012).Google Scholar
53. Ruffell, S., Bradby, J., Williams, J., Munoz-Paniagua, D., Tadayyon, S., Coatsworth, L., and Norton, P.: Nanoindentation-induced phase transformations in silicon at elevated temperatures. Nanotechnology 20, 135603135608 (2009).Google Scholar
54. Kiran, M., Haberl, B., Williams, J., and Bradby, J.: Temperature dependent deformation mechanisms in pure amorphous silicon. J. Appl. Phys. 115, 113511 (2014).Google Scholar
55. Singh, R.K., Munroe, P., and Hoffman, M.: Effect of temperature on metastable phases induced in silicon during nanoindentation. J. Mater. Res. 23, 245249 (2008).CrossRefGoogle Scholar
56. Domnich, V., Aratyn, Y., Kriven, W.M., and Gogotsi, Y.: Temperature dependence of silicon hardness: experimental evidence of phase transformations. Rev. Adv. Mater. Sci. 17, 3341 (2008).Google Scholar
57. Kiran, M., Tran, T., Smillie, L., Haberl, B., Subianto, D., Williams, J., and Bradby, J.: Temperature-dependent mechanical deformation of silicon at the nanoscale: phase transformation versus defect propagation. J. Appl. Phys. 117, 205901 (2015).CrossRefGoogle Scholar
58. Vandeperre, L., Giuliani, F., Lloyd, S., and Clegg, W.: The hardness of silicon and germanium. Acta Mater. 55, 63076315 (2007).Google Scholar
59. Xiao, S. and Pirouz, P.: On diamond-hexagonal germanium. J. Mater. Res. 7, 14061412 (1992).Google Scholar
60. Menoni, C.S., Hu, J.Z., and Spain, I.L.: Germanium at high pressures. Phys. Rev. B 34, 362 (1986).Google Scholar
61. Huang, X., Nohava, J., Zhang, B., and Ramirez, A.: Nanoindentation of NiTi shape memory thin films at elevated temperatures. Int. J. Smart Nano Mater. 2, 3949 (2011).Google Scholar
62. Ma, X.-G. and Komvopoulos, K.: In situ transmission electron microscopy and nanoindentation studies of phase transformation and pseudoelasticity of shape-memory titanium-nickel films. J. Mater. Res. 20, 18081813 (2005).CrossRefGoogle Scholar
63. Komvopoulos, K. and Ma, X.-G.: Pseudoelasticity of martensitic titanium-nickel shape-memory films studied by in situ heating nanoindentation and transmission electron microscopy. Appl. Phys. Lett. 87, 263108 (2005).CrossRefGoogle Scholar
64. Li, Y., Fang, X., Lu, S., Yu, Q., Hou, G., and Feng, X.: Effects of creep and oxidation on reduced modulus in high-temperature nanoindentation. Mater. Sci. Eng.: A 678, 6571 (2016).Google Scholar
65. Feng, G. and Ngan, A.: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660668 (2002).Google Scholar
66. Rogers, J.A., Maznev, A.A., Banet, M.J., and Nelson, K.A.: Optical generation and characterization of acoustic waves in thin films: fundamentals and applications. Annu. Rev. Mater. Sci. 30, 117157 (2000).Google Scholar
67. Beck, C.E., Hofmann, F., Eliason, J.K., Maznev, A.A., Nelson, K.A., and Armstrong, D.E.: Correcting for contact area changes in nanoindentation using surface acoustic waves. Scr. Mater. 128, 8386 (2017).Google Scholar
68. Fujisawa, N. and Swain, M.V.: On the indentation contact area of a creeping solid during constant-strain-rate loading by a sharp indenter. J. Mater. Res. 22, 893899 (2007).Google Scholar
69. Haberl, B., Aji, L.B.B., Williams, J., and Bradby, J.E.: The indentation hardness of silicon measured by instrumented indentation: what does it mean? J. Mater. Res. 27, 30663072 (2012).Google Scholar
70. Tsui, T. and Pharr, G.: Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J. Mater. Res. 14, 292301 (1999).Google Scholar
71. Gibson, J.S.-L., Roberts, S.G., and Armstrong, D.E.: High temperature indentation of helium-implanted tungsten. Mater. Sci. Eng.: A 625, 380384 (2015).Google Scholar
72. Harris, A., Beake, B., Armstrong, D., and Davies, M.: Development of high temperature nanoindentation methodology and its application in the nanoindentation of polycrystalline tungsten in vacuum to 950° C. Exp. Mech. 57, 11151126 (2017).Google Scholar
73. de Figueiredo, M.R., Abad, M.D., Harris, A.J., Czettl, C., Mitterer, C., and Hosemann, P.: Nanoindentation of chemical-vapor deposited Al 2 O 3 hard coatings at elevated temperatures. Thin Solid Films 578, 2024 (2015).Google Scholar
74. Ctvrtlik, R., Al-Haik, M.S., and Kulikovsky, V.: Mechanical properties of amorphous silicon carbonitride thin films at elevated temperatures. J. Mater. Sci. 50, 15531564 (2015).Google Scholar
75. Rohbeck, N., Tsivoulas, D., Shapiro, I.P., Xiao, P., Knol, S., Escleine, J.-M., and Perez, M.: In-situ nanoindentation of irradiated silicon carbide in TRISO particle fuel up to 500° C. J. Nucl. Mater. 465, 692694 (2015).CrossRefGoogle Scholar
76. Broitman, E., Tengdelius, L., Hangen, U.D., Lu, J., Hultman, L., and Högberg, H.: High-temperature nanoindentation of epitaxial ZrB 2 thin films. Scr. Mater. 124, 117120 (2016).Google Scholar
77. Lu, J.-Y., Ren, H., Deng, D.-M., Wang, Y., Chen, K.J., Lau, K.-M., and Zhang, T.-Y.: Thermally activated pop-in and indentation size effects in GaN films. J. Phys. D: Appl. Phys. 45, 085301 (2012).Google Scholar
78. Nieh, T., Iwamoto, C., Ikuhara, Y., Lee, K., and Chung, Y.: Comparative studies of crystallization of a bulk Zr–Al–Ti–Cu–Ni amorphous alloy. Intermetallics 12, 11831189 (2004).Google Scholar
79. Marques, V., Johnston, C., and Grant, P.: Nanomechanical characterization of Sn–Ag–Cu/Cu joints—Part 1: young's modulus, hardness and deformation mechanisms as a function of temperature. Acta Mater. 61, 24602470 (2013).CrossRefGoogle Scholar
80. Marques, V., Wunderle, B., Johnston, C., and Grant, P.: Nanomechanical characterization of Sn–Ag–Cu/Cu joints—Part 2: Nanoindentation creep and its relationship with uniaxial creep as a function of temperature. Acta Mater. 61, 24712480 (2013).Google Scholar
81. Gibson, J.S.-L., Schröders, S., Zehnder, C., and Korte-Kerzel, S.: On extracting mechanical properties from nanoindentation at temperatures up to 1000° C. Extreme Mech. Lett. 17, 4349 (2017).Google Scholar
82. Prasitthipayong, A., Vachhani, S., Tumey, S., Minor, A., and Hosemann, P.: Indentation size effect in unirradiated and ion-irradiated 800H steel at high temperatures. Acta Mater. 144, 896904 (2018).Google Scholar
83. Wood, A.M. and Clyne, T.: Measurement and modelling of the nanoindentation response of shape memory alloys. Acta Mater. 54, 56075615 (2006).Google Scholar
84. Maier, V., Hohenwarter, A., Pippan, R., and Kiener, D.: Thermally activated deformation processes in body-centered cubic Cr–How microstructure influences strain-rate sensitivity. Scr. Mater. 106, 4245 (2015).Google Scholar
85. Leitner, A., Maier-Kiener, V., Jeong, J., Abad, M., Hosemann, P., Oh, S., and Kiener, D.: Interface dominated mechanical properties of ultra-fine grained and nanoporous Au at elevated temperatures. Acta Mater. 121, 104116 (2016).Google Scholar
86. Kreuzeder, M., Abad, M.-D., Primorac, M.-M., Hosemann, P., Maier, V., and Kiener, D.: Fabrication and thermo-mechanical behavior of ultra-fine porous copper. J. Mater. Sci. 50, 634643 (2015).Google Scholar
87. Trelewicz, J.R. and Schuh, C.A.: Hot nanoindentation of nanocrystalline Ni–W alloys. Scr. Mater. 61, 10561059 (2009).Google Scholar
88. Maier-Kiener, V., Schuh, B., George, E.P., Clemens, H., and Hohenwarter, A.: Insights into the deformation behavior of the CrMnFeCoNi high-entropy alloy revealed by elevated temperature nanoindentation. J. Mater. Res. 32, 26582667 (2017).Google Scholar
89. Kormout, K., Ghosh, P., Maier-Kiener, V., and Pippan, R.: Deformation mechanisms during severe plastic deformation of a Cu Ag composite. J. Alloys Compd. 695, 22852294 (2017).Google Scholar
90. Wu, Q., Meng, Y., Concha, K., Wang, S., Li, Y., Ma, L., and Fu, S.: Influence of temperature and humidity on nano-mechanical properties of cellulose nanocrystal films made from switchgrass and cotton. Ind. Crops Prod. 48, 2835 (2013).CrossRefGoogle Scholar
91. Milhans, J., Li, D., Khaleel, M., Sun, X., Al-Haik, M.S., Harris, A., and Garmestani, H.: Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures. J. Power Sources 196, 55995603 (2011).Google Scholar
92. Hangen, U., Chen, C.L., and Richter, A.: Mechanical characterization of PM2000 oxide-dispersion-strengthened alloy by high temperature nanoindentation. Adv. Eng. Mater. 17, 16831690 (2015).Google Scholar
93. Li, Y., Fang, X., Xia, B., and Feng, X.: In situ measurement of oxidation evolution at elevated temperature by nanoindentation. Scr. Mater. 103, 6164 (2015).Google Scholar
94. Li, Y., Feng, S., Wu, W., and Li, F.: Temperature dependent mechanical property of PZT film: an investigation by nanoindentation. PLoS ONE 10, e0116478 (2015).CrossRefGoogle ScholarPubMed
95. Koch, S., Abad, M.D., Renhart, S., Antrekowitsch, H., and Hosemann, P.: A high temperature nanoindentation study of Al–Cu wrought alloy. Mater. Sci. Eng.: A 644, 218224 (2015).Google Scholar
96. Gao, F., Nishikawa, H., Takemoto, T., and Qu, J.: Mechanical properties versus temperature relation of individual phases in Sn–3.0 Ag–0.5 Cu lead-free solder alloy. Microelectron. Reliab. 49, 296302 (2009).Google Scholar
97. Seltzer, R., Kim, J.K., and Mai, Y.W.: Elevated temperature nanoindentation behaviour of polyamide 6. Polym. Int. 60, 17531761 (2011).Google Scholar
98. Fulcher, J., Lu, Y., Tandon, G., and Foster, D.: Thermomechanical characterization of shape memory polymers using high temperature nanoindentation. Polym. Test. 29, 544552 (2010).Google Scholar
99. Hinz, M., Kleiner, A., Hild, S., Marti, O., Dürig, U., Gotsmann, B., Drechsler, U., Albrecht, T., and Vettiger, P.: Temperature dependent nano indentation of thin polymer films with the scanning force microscope. Eur. Polym. J. 40, 957964 (2004).Google Scholar
100. Sills, S., Fong, H., Buenviaje, C., Sarikaya, M., and Overney, R.M.: Thermal transition measurements of polymer thin films by modulated nanoindentation. J. Appl. Phys. 98, 014302 (2005).Google Scholar
101. Phani, P.S. and Oliver, W.: A direct comparison of high temperature nanoindentation creep and uniaxial creep measurements for commercial purity aluminum. Acta Mater. 111, 3138 (2016).Google Scholar
102. Cheng, G., Choi, K.S., Hu, X., and Sun, X.: Determining individual phase properties in a multi-phase Q&P steel using multi-scale indentation tests. Mater. Sci. Eng.: A 652, 384395 (2016).Google Scholar
103. Kadkhodapour, J., Schmauder, S., Raabe, D., Ziaei-Rad, S., Weber, U., and Calcagnotto, M.: Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels. Acta Mater. 59, 43874394 (2011).Google Scholar
104. Ahn, T.-H., Oh, C.-S., Kim, D., Oh, K., Bei, H., George, E.P., and Han, H.: Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation. Scr. Mater. 63, 540543 (2010).Google Scholar
105. He, B., Huang, M., Liang, Z., Ngan, A., Luo, H., Shi, J., Cao, W., and Dong, H.: Nanoindentation investigation on the mechanical stability of individual austenite grains in a medium-Mn transformation-induced plasticity steel. Scr. Mater. 69, 215218 (2013).Google Scholar
106. Gadelrab, K.R., Li, G., Chiesa, M., and Souier, T.: Local characterization of austenite and ferrite phases in duplex stainless steel using MFM and nanoindentation. J. Mater. Res. 27, 15731579 (2012).Google Scholar
107. Wheeler, J., Niederberger, C., Tessarek, C., Christiansen, S., and Michler, J.: Extraction of plasticity parameters of GaN with high temperature, in situ micro-compression. Int. J. Plast. 40, 140151 (2013).Google Scholar
108. Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 15641583 (1992).CrossRefGoogle Scholar
109. Field, J. and Swain, M.: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297306 (1993).Google Scholar