No CrossRef data available.
Article contents
(100) Oriented Sputter-deposited Pt Thin Films on MgO/Fe Composite Bilayers using SiO2/Si substrates With Addition of O2 During Pt Sputtering
Published online by Cambridge University Press: 01 February 2011
Abstract
Perovskite type oxide thin films have attracted a lot of attention, because they are essential materials which will be used for various electric devices such as ferroelectric random access memory (FeRAM) and tunable filter devices. When the materials are used for such capacitive devices, bottom electrode layers for oxide films are very important, since they significantly affect the crystallinity of the oxide films. Platinum (Pt) is one of the well known bottom electrode materials used for the oxide thin films. Pt provides also better nucleation sites for such perovskite materials due to small lattice misfit. Since dielectric properties of ferroelectric films are originated from the displacement of ions in a crystal along the c-axis direction, c-axis oriented ferroelectric thin films are required to attain better dielectric properties. (100) oriented Pt layers are required to attain c-axis oriented perovskite type ferroelectric films. In our previous report, we succeeded in preparing (100)-oriented Pt thin films with thickness of 20 nm on SiO2/Si substrate at substrate temperature Ts above 400 °C using MgO (100) buffer layers which deposited on Fe (100) seed layers. However, the growth of Pt(111) texture appeared when the thickness was increased from 20 nm to 100 nm, since (100) texture has relatively higher surface energy than (111) closely packed texture for Pt surface. It suggested that surface energy of the films changed during the deposition. In order to keep the surface energy, addition of O2 gas was performed during Pt deposition. Pt thin films with (100) preferred orientation with thickness above 100 nm were deposited on the (100) oriented MgO layer prepared on very thin seed Fe layers deposited on SiO2/Si substrates at Ts of 500 °C by facing-targets sputtering. It was also succeeded to attain (100) oriented perovskite oxide layer when they were deposited on the Pt(100)/Mg(100)/Fe/SiO2/Si underlayer.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2010