Published online by Cambridge University Press: 10 February 2011
We have determined the growth conditions which result in a narrow linewidth and room temperature emission at 1.3pm from InAs/GaAs Quantum dots (QDs). The QDs formed under these conditions are extremely uniform in size and exhibit an emission linewidth of only 25meV. Single QD layers have been incorporated into p-i-n diodes which exhibit strong electroluminescence. We have compared the efficiency of these devices with a nominally identical quantum well device. The QD based device exhibits a higher electroluminescence efficiency, especially at low current densities. At higher current densities there is a loss of efficiency due to recombination from excited states.
Operated under reverse bias, the diodes act as photo-detectors and the measured photocurrent spectrum exhibits peaks due to absorption in the ground and excited states of the QDs as well as the 2D confining layer.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.