Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T17:31:48.407Z Has data issue: false hasContentIssue false

133Cs and 23Na NMR Studies of Cs8NaxGe136 Clathrates

Published online by Cambridge University Press:  21 March 2011

R.F. Marzke
Affiliation:
Dept. of Physics, Arizona State University, Tempe, AZ 85287
G. S. Nolas
Affiliation:
Dept. of Physics, University of South Florida, Tampa, FL 33620
J. Gryko
Affiliation:
Dept. of Physical & Earth Sci., Jacksonville State Univ., Jacksonville, AL 36265
Get access

Abstract

We report 133Cs and 23Na spectra of Cs8NaxGe136 clathrates. Fully loaded Cs8Na16Ge136 shows only ionic signals from both Cs and Na nuclei. In contrast to the Cs8Na16Si136 clathrate, germanium Cs8Na16Ge136 clathrate shows no large Knight or paramagnetic shifts. However, when sodium is removed from Cs8Na16Ge136, the resulting Cs8Ge136 clathrate shows a very large shift in the 133Cs NMR spectrum.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cros, C., Pouchard, M. and Hagenmuller, P., C. R. Acad. Sc. Paris 260, 4764 (1965); J.S. Kasper, P. Hagenmuller, M. Pouchard and C. Cros, Science 150, 1713 (1965); C. Cros, M. Pouchard and P. Hagenmuller, J. Solid State Chem. 2, 5470 (1970).Google Scholar
2. Kawaji, H., Horie, H., Yamanaka, S. and Ishikawa, M., Phys. Rev. Lett. 74, 1427 (1995).Google Scholar
3. Nolas, G. S., Cohn, J. L., Slack, G. A. and Schujman, S. B., Appl. Phys. Lett. 73, 178 (1998); G.S. Nolas, T.J.R. Weakley and J. L. Cohn, Chem. Mater. 11, 2470 (1999); N.P. Blake, L. Mollnitz, G. Kresse and H. Metiu, J. Chem. Phys. 111, 333 (1999); J. L. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf and G. A. Slack, Phys. Rev. Lett. 82, 779 (1999).Google Scholar
4. For two recent reviews see Chapter 6 of Nolas, G.S., Sharp, J. and Goldsmid, H.J., Principles of Thermoelectrics: Basics and New Materials Research, Springer-Verlag, New York, 2001,Google Scholar
and Nolas, G.S., Slack, G.A. and Schujman, S.B., in Semiconductors and Semimetals, Volume 69, edited by Tritt, T.M. (Academic Press, San Diego, 2000) p. 255, and references therein.Google Scholar
5. Gryko, J., McMillan, P.F., Marzke, R.F., Ramachandran, G.K., Patton, D., Deb, S.K. and Sankey, O.F., Phys. Rev. B 62, R7707 (2000).Google Scholar
6. He, J., Klug, D. D., Uehara, K., Preston, K. F., Ch. Ratcliffe, I., and Tse, J. S., J. Phys. Chem. B 105, 3575 (2001).Google Scholar
7. Gryko, J., McMillan, P. F., Marzke, R. F., Dodokin, A. P., Demkov, A. A., and Sankey, O. F., Phys. Rev. B 57, 4172 (1998).Google Scholar
8. Reny, E., Menetrier, M., Cros, C., Pouchard, M., and Senegas, J., C. R. Acad. Chim. France, 1, 129 (1998).Google Scholar
9. Ramachandran, G. K., Dong, J., Sankey, O. F., and McMillan, P. F., Phys. Rev. B 63, 33102 (2000).Google Scholar
10. Latturner, S., Iversen, B. B., Sepa, J., Srdanov, V., and Stucky, G., Phys. Rev. B 63, 125403 (2001).Google Scholar
11. Bobev, S. and Sevov, S. C., J. Am. Chem. Soc. 121, 3795 (1999); G. S.Nolas, J. L.Cohn, M. Kaeser, and T. M.Tritt, Proceedings of the Spring 2000 Materials Research Society Conference, in press.Google Scholar