Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T20:55:18.907Z Has data issue: false hasContentIssue false

13C Isotopic Effect on the Raman Spectrum and Structure of C60 Fullerene

Published online by Cambridge University Press:  15 February 2011

Pham V. Huong
Affiliation:
Laboratoire de Spectroscopie Moléculaire et Cristalline, Université Bordeaux I, 351 cours Libération, 33405 Talence, France-, Fax 33-56 84 84 02
Denis JÉrÔme
Affiliation:
Laboratoire de Physique des Solides, Université Paris-Sud, bât. 510, 91405 Orsay, France
Pascale Auban-Senzier
Affiliation:
Laboratoire de Physique des Solides, Université Paris-Sud, bât. 510, 91405 Orsay, France
Patrick Bernier
Affiliation:
G.D.P.C., Université Montpellier II, 34095 Montpellier, France
Get access

Abstract

The Raman spectrum of 13C enriched C60 samples is recorded and analyzed in comparison with that of undoped 12C60. Comparison with the isotopic effect in diamond and in other infinite solid networks is also made.

A frequency shift depending on the amount of 13C is observed for the C=C stretching vibration, without any splitting. This effect is unusual and is a proof that the C=C is not localized and its double bond character is not isolated but strongly coupled with other bonds in the cage. If the CC bond was independent as in small or non-spherical molecules such as organic compounds, an isotopic effect of Δv ≃ 30 cm-1 for 12C=13C and Δv ≃ 60 cm−1 for 13C=13C could be expected and a splitting could appear in the case of uncompleted 13C substitution and variable relative intensities could be observed. It is not the case of 13C60.

In isotopic C60, all C=C vibrations in the spherical network are stronglycoupled ; an average isotopic mass must be considered for the randomly distributed isotopic atoms in the material to interpret the experimental result. C60 has thus more solid than molecule behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huong, P. V., Mat. Letters 14, 80 (1992).Google Scholar
2. Huong, P. V., J. Mol. Struct. 292, 81 (1993).Google Scholar
3. Huong, P. V. in “Analytical Raman Spectroscopy”, Grasselli, J. & Bulkin, B. Eds, Wiley, New-York, 1991, p. 397.Google Scholar
4. Hass, K. C., Tamor, M. A., Anthony, T. R. and Banholzer, W. F., Physical Rev. B 44, 12046 (1991).Google Scholar
5. Fuchs, H. D., Etchegoin, P., Cardona, M., Itoh, K. and Haller, E. E., Phys. Rev. Lett. 70, 1715 (1993).Google Scholar
6. Fuchs, H. D., Grein, C. H., Devlen, R. I., Kuhl, U. and Cardona, M., Physical Rev. B 44, 8633 (1991).Google Scholar
7. Etchegoin, P., Fuchs, H. D., Weber, J., Cardona, M., Pintschovius, L., Pyka, N., Itoh, K. and Haller, E. E., Physical Rev. B 48, 12661 (1993).Google Scholar
8. Huong, P. V., Diamond and Related Mat. 1, 33 (1991).Google Scholar
9. Huong, P. V., Marcus, B., Mermoux, M., Veirs, D. K., Rosenblatt, G. M., Diamond and Related Mat. B1, 869 (1992).Google Scholar
10. Collins, A. T., Lawson, S. C., Davies, G. and Kanda, H., Phys. Rev. Lett. 65, 891 (1990).Google Scholar
11. Pavone, P., Karch, K., Schutt, O., Windl, W., Strauch, D., Giannozzi, P. and Baroni, S., Physical Rev. B 45, 3156 (1993).Google Scholar
12. Ramdas, A. K., Rodriguez, S., Grimsditch, M., Anthony, T. R. and Banholzer, W. F., Phys. Rev. Lett. 76, 189 (1993).Google Scholar
13. Spitzer, J., Etchegoin, P., Cardona, M., Anthony, T. R. and Banholzer, W. F., Solid State Commun. 88, 509 (1993).Google Scholar
14. Lefranc, J., ICSM Conference, Göteborg, Sweden, 1992.Google Scholar
15. Huong, P. V., Solid State Comm. 88, 23 (1993).Google Scholar