Published online by Cambridge University Press: 15 February 2011
Ab initio planewave pseudopotential method is used to study carbon diffusion and pairing in crystalline silicon. The calculation is performed with a 40 Ry planewave cutoff and 2×2×2 special k-point sampling with a supercell of 64 atoms. It is found that substitutional carbon attracts interstitial Si forming a <001> C interstitial with a large binding energy of 1.45 eV. The interstitial carbon is mobile and can migrate with a migration energy of 0.5 eV. The interstitial carbon can bind further to another substitutional carbon forming a substitutional carbon-interstitutional carbon pair with a binding energy of 1.0 eV. This model is used to understand the effect of high C concentration on the transient enhanced diffusion in Si.