Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:32:34.184Z Has data issue: false hasContentIssue false

Ab Initio Study of Electronic and Geometric Structures of Metal/Ceramic Heterophase Boundaries

Published online by Cambridge University Press:  10 February 2011

S. Köstlmeier
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, D-70174 Stuttgart, Germany
C. Elsässer
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, D-70174 Stuttgart, Germany
B. Meyer
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany.
M. W. Finnis
Affiliation:
Atomistic Simulation Group, School of Mathematics and Physics, Queen's University of Belfast, Belfast BT7 INN, Northern Ireland.
Get access

Abstract

The adhesion geometries of coherent cube-on-cube interfaces between spinel (MgAl2O4) and the two metals Al and Ag were determined by density functional band structure calculations in the local density approximation (LDA). For Al/MgAl2O4, for which experimental data are available, the calculated optimum interface geometry is in excellent agreement with HRTEM measurements (distance dint: 1.90 Å calc., 1.90±0.04 Å exp.).

The work of adhesion Wad is calculated for three different high-symmetry translation states between an Al-0 terminated (001) surface of the spinel and the (001) surface of each of the metals. The binding energy curves display a distinct optimum for the adhesion of aluminum atoms on top of the spinel oxygen ions at a Wad value of 2.4 J/m2. For silver several adsorption sites are isoenergetic at 1.1 J/m2 and the intersections of the Wad (dint) curves indicate a low-energy dissociation path. A further analysis of the electronic structure in the Al/MgAl2O4 system reveals the charge redistribution in the metal towards the oxygen ions as the main contribution to bonding. On the contrary, polarization of the metal film is the major effect observed on the adhesion of Ag to the spinel substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schweinfest, R., Wagner, T., and Ernst, F., to be published.Google Scholar
[2] Schönberger, U., Andersen, O. K., and Methfessel, M., Acta Metall. Mater. 40, S1 (1992).Google Scholar
[3] Smith, J. R., Hong, T., and Srolovitz, D. J., Phys. Rev. Lett. 72, 4021 (1994).Google Scholar
[4] Li, C., Wu, R., Freeman, A. J., and Fu, C. L., Phys. Rev. B 48, 8317 (1993).Google Scholar
[5] Kruse, C., Finnis, M. W., Lin, J. S., Payne, M. C., Milman, V. Y., DeVita, A., and Gillan, M. J., Phil. Mag. Lett. 73, 377 (1996).Google Scholar
[6] Ikuhara, Y., Sugawara, Y., Tanaka, I., and Pirouz, P., Interface Science 5, 5 (1997).Google Scholar
[7] Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
[8] Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
[9] Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
[10] Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
[11] Louie, S. G., Ho, K. M., and Cohen, M. L., Phys. Rev. B 19, 1979 (1974).Google Scholar
[12] Elsässer, C., Takeuchi, N., Ho, K. M., Chan, C. T., Braun, P., and Fähnle, M., J. Phys.: Condens. Matter 2, 4371 (1990).Google Scholar
[13] Ho, K. M., Elsässer, C., Chan, C. T., and Fähnle, M., J. Phys.: Condens. Matter 4, 5189 (1992).Google Scholar
[14] Vanderbilt, D., Phys. Rev. B 32, 8412 (1985).Google Scholar
[15] Köstlmeier, S., Elsässer, C., Meyer, B., and Finnis, M. W., to be published.Google Scholar
[16] Bondi, A., J. Phys. Chem. 68, 441 (1964).Google Scholar
[17] Shannon, R. D., Acta Cryst. A32, 751 (1976).Google Scholar