Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T14:25:26.225Z Has data issue: false hasContentIssue false

AC Conduction in Quasiperiodic Lattices

Published online by Cambridge University Press:  17 March 2011

Chumin Wangs
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, C.P. 04510, México D.F., MEXICO
Raúl Oviedo-Roa
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, C.P. 04510, México D.F., MEXICO
Vicenta Śnchez
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, C.P. 04510, México D.F., MEXICO
Luis A. Pérez
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, C.P. 04510, México D.F., MEXICO
Get access

Abstract

The electronic transport in Fibonacci lattices at zero temperature is studied by means of the Kubo-Greenwood formula within the tight-binding scheme, where a renormalization process capable to address the electrical conductivity in macroscopic quasiperiodic systems is used. The effects of the Fermi-energy location on the ac conductivity are analyzed in detail for a wide range of the system sizes. Special attention is paid to the transparent states, whose transmission coefficient is unity. The results show a rapid decay of their ac conductivity as the frequency increases in comparison with that of periodic systems, and the spectra scale with the inverse of the system size as occur in periodic ones, where analytical results are obtained. Furthermore, a new low-frequency minimum appears when the inhomogeneity of the Fibonacci lattice grows.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Süto, A., in Beyond Quasicrystals, edited by Axel, F. and Gratias, D. (Les Editions de Physique, France, 1994), p. 483.Google Scholar
2. Geisel, T., Ketzmerick, R., and Petschel, G., Phys. Rev. Lett. 66, 1651 (1991).Google Scholar
3. Merlin, R., Bajema, K., Clarke, R., Yuang, F.-Y., and Bhattacharya, P. K., Phys. Rev. Lett. 55, 1768 (1985).Google Scholar
4. Wang, C., and Barrio, R.A., Phys. Rev. Lett. 61, 191 (1988).Google Scholar
5. Aldea, A. and Dulea, M., Phys. Rev. Lett. 60, 1672 (1988).Google Scholar
6. Mayou, D., Phys. Rev. Lett. 85, 1290 (2000).Google Scholar
7. Mací, E. and Domínguez-Adame, F., Phys. Rev. Lett. 76, 2957 (1996).Google Scholar
8. Oviedo-Roa, R., Pérez, L.A., and Wang, C., Phys. Rev. B 62, 13805 (2000).Google Scholar
9. Huang, X. and Gong, C., Phys. Rev. B 58, 739 (1998).Google Scholar
10. Kramer, B. and MacKinon, A., Rep. Prog. Phys. 56, 1469 (1993).Google Scholar
11. nchez, V. Ś and Wang, C., to be published.Google Scholar
12. Economou, E. N., Green's Functions in Quantum Physics (Springer-Verlag, New York, 1983), p. 80.Google Scholar