No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We report a highly selective technique for the rapid and label-free analysis of nucleic acid sample using Metal Oxide Semiconductor (MOS) capacitive sensors. The binding of charged macromolecules such as DNA on the surface of these Field Effect Devices modifies the charge distribution in the Semiconductor (Si) region of the sensor. These changes are manifested as a significant shift in the Capacitance-Voltage (C-V) characteristics measured across the device. The speed and selectivity of the detection process is enhanced by the use of external electric field of controlled intensity. This simple and high-throughput sensing technique holds promises for the future electronic DNA arrays and Lab-on-a chip devices