Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-18T11:19:43.756Z Has data issue: false hasContentIssue false

Adhesion of Soft Biological Shells controlled by Bending Elasticity and Macromolecular Networks

Published online by Cambridge University Press:  10 February 2011

R. Simson
Affiliation:
Physik Department E22, Technische Universität München, James Franck Strasse, 85748 Garching, Germany. sackmann@physik.tu-muenchen.de
A. Albersdörfer
Affiliation:
Physik Department E22, Technische Universität München, James Franck Strasse, 85748 Garching, Germany. sackmann@physik.tu-muenchen.de
E. Sackmann
Affiliation:
Physik Department E22, Technische Universität München, James Franck Strasse, 85748 Garching, Germany. sackmann@physik.tu-muenchen.de
Get access

Abstract

We present an interferometrie technique allowing reliable measurements of bending modulus κ, membrane tension Σ and adhesion energy W of cells crawling on substrates. All three parameters are important for cell locomotion and reflect the local balance of attractive and repulsive forces between cell and substratum as well as the internal coupling of cell membrane and the underlying cytoskeleton. Mutants of the Dictyostelium ameba lacking an important cytoskeletal protein, Cortexillin, exhibited a markedly reduced bending modulus and adhesion energy as compared to wild type Dictyostelium. In addition, experiments with model membrane systems suggest that the combination of attractive and repulsive forces results in a local clustering of receptors mediating cell adhesion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albersdörfer, A., Feder, T., and Sackmann, E., submitted (1996).Google Scholar
Bruinsma, R., Goulian, M., and Pincus, P.. Biophys. J. 67: 746750 (1994).Google Scholar
Bruinsma, R. NATO, ASI, Winterschool: Physics of Biomaterials, Plenum Press, in press (1996).Google Scholar
Duwe, H.P., and Sackmann, E.. Physica A163: 410428 (1990).Google Scholar
Discher, E.D. and Mohandas, N.. Biophys. J. 71: 16801694 (1996).Google Scholar
Evans, E., and Parsegian, V.A.. Ann. N.Y. Acad. Sci. 416: 1333 (1983).Google Scholar
Faix, J., Steinmetz, M., Boves, H., Kammerer, R.A., Lottspeich, F., Mintert, U., Murphy, J., Stock, A., Aebi, U. and Gehrisch, G.. Cell 86: 631642 (1996).Google Scholar
Hanein, D., Geigerand, B. Addadi, L.. Science 263: 14131416 (1994).Google Scholar
Lipowsky, R. and Sackmann, E.. Structure and Dynamics of Membranes, Elsevier Amsterdam (1995).Google Scholar
Radier, J., Feder, T.J., Strey, H.H. and Sackmann, E.. Phys. Rev. E. 51(5): 45264536 (1995).Google Scholar
Seifert, U., and Lipowsky, R.. 1990. Phys, Rev. A. 42: 47684771.Google Scholar
Seifert, U., Miao, L., Döbereiner, H. and Wortis, M. in The structure and conformation of amphiphilic membranes. Springer Proceedings in Physics 66 (1991).Google Scholar
Weber, I., Wallraff, E., Albrecht, R. and Gehrisch, G., in press.Google Scholar