No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
Carbon nanotubes have the potential of being used as interconnects and active semiconducting material in future electronic circuits. It is necessary to study such nano-scale circuits with probes that can make measurements with molecular precision. We describe results using two nanoprobe techniques, namely scanning surface potential microscopy (SSPM), and conductive tip atomic force microscopy (CT-AFM), in the investigation of electrical properties of nanotube circuits. Vertical arrays of multi-walled nanotubes, grown in a porous alumina template with a metal back contact were analyzed. Current mapping confirmed that the nanotubes were electrically connected to the back contact. Isolated single-walled nanotube bundles deposited on an oxidized silicon wafer, and contacted electrically through chromium electrodes were also studied. Contact potential differences between the metal and nanotubes, and the current in some connected nanotubes were measured. Measurements of contact potential with different metals, and the nature of microscopic transport is crucial. Contact potential measurements can also provide fast and reliable characterization of junctions between metallic and semiconducting nanotubes and metals electrodes.