Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T16:28:49.209Z Has data issue: false hasContentIssue false

Aligned Sintered Compacts of RBa2Cu3O7−x (R=Dy, Er, Eu, Gd, Ho, Y)

Published online by Cambridge University Press:  28 February 2011

R. H. Arendt
Affiliation:
General Electric Company, Corporate Research and Development, P.O. Box 8, Schenectady, NY 12301
A. R. Gaddipati
Affiliation:
General Electric Company, Corporate Research and Development, P.O. Box 8, Schenectady, NY 12301
M. F. Garbauskas
Affiliation:
General Electric Company, Corporate Research and Development, P.O. Box 8, Schenectady, NY 12301
E. L. Hall
Affiliation:
General Electric Company, Corporate Research and Development, P.O. Box 8, Schenectady, NY 12301
H. R. Hart Jr
Affiliation:
General Electric Company, Corporate Research and Development, P.O. Box 8, Schenectady, NY 12301
K. W. Lay
Affiliation:
General Electric Company, Corporate Research and Development, P.O. Box 8, Schenectady, NY 12301
J. D. Livingston
Affiliation:
General Electric Company, Corporate Research and Development, P.O. Box 8, Schenectady, NY 12301
F. E. Luborsky
Affiliation:
General Electric Company, Corporate Research and Development, P.O. Box 8, Schenectady, NY 12301
L. L. Schilling
Affiliation:
General Electric Company, Corporate Research and Development, P.O. Box 8, Schenectady, NY 12301
Get access

Abstract

Sintered compacts of magnetically aligned single-crystal particles have been studied by x-ray, microscopy, and magnetic measurements. Though significant alignment and very anisotropie magnetic hysteresis were obtained, the magnitude of the hysteresis indicates, through the critical state model, that the bulk critical current density remains low.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ekin, J. W., Advanced Ceramic Materials, 2, 586 (1987).Google Scholar
2. Diriger, T. R., Worthington, T. K., Gallagher, W. J., and Sandstrom, R. L., Phys. Rev. Lett, 58, 2687 (1987).Google Scholar
3. Chaudhari, P., Koch, R., Laibowitz, R. B., McGuire, T. R., and Gambino, R. J., Phys. Rev. Lett. 58, 2684 (1987).Google Scholar
4. Farrell, D. E., Chandrasekhar, B. S., DeGuire, M. R., Fang, M. M., Kogan, V. G., Clem, J. R., and Finnemore, D. K., Phys. Rev. B36, 4025 (1987).Google Scholar
5. Arendt, R. H., Garbauskas, M. F., Luborsky, F. E., (to be submitted to 4th Joint MMM-Intermag. Conf., Vancouver, 1988).Google Scholar
6. Garbauskas, M. F., Arendt, R. H., and Kasper, J. S., Inorganic Chemistry 26, 3191 (1987).Google Scholar
7. Livingston, J. D., Gaddipati, A. R., and Arendt, R. H., this conference, paper AA 7.92.Google Scholar
8. Cava, R. J., Batlogg, B., Chen, C. H., Rietman, E. A., Zahurak, S. M., and Werder, D., Nature 329, 423 (1987).Google Scholar
9. Bean, C. P., Rev. Mod. Phys. 36, 31 (1964).Google Scholar
10. Suenaga, M., Ghosh, A., Asano, T., Sabatini, R. L., and Moodenbaugh, A. R. in High Temperature Superconductors, edited by Gubser, D. U. and Schlüter, M. (Mater. Res. Soc. Proc. EA-11, Pittsburgh, PA 1987) pp. 247249.Google Scholar
11. Campbell, A. M., Hibbs, A. D., Ashby, M. F., Edwards, P. P., Jones, R., Evetts, J. E., and Głowacki, B., (to be published).Google Scholar