Published online by Cambridge University Press: 15 February 2011
Alkali-activated cementitious materials have considerable potential, with properties ranging from very high early strength to very high long term strength and low porosity. The role of alkalis in activating industrial by-products such as ground granulated (glassy) blast-furnace slag, ultra-fine silica fume or other by-product silicas, glassy fly ashes, and other amorphous materials is discussed. These by-product materials are activated by alkali additions which break the strong silicon oxygen bonds in the silicate or alumino-silicate network, accompanied by the formation of new reaction products. The role of the different components in multi-component activated cements on the reactivity and the nature of the resultant products is discussed. Characterization of starting materials and reaction products by XRD, SEM (including environmental SEM), chemical, and particle characterization techniques has been made. Additional results include investigation of pore solution chemistry as a function of time. Some inferences for long term durability are discussed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.