Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T21:03:01.495Z Has data issue: false hasContentIssue false

An Effective In-Situ O2 High Density Plasma Clean

Published online by Cambridge University Press:  21 February 2011

K. Reinhardt
Affiliation:
SEMATECH, 2706 Montopolis Drive, Austin, Texas 78741, On assignment from Advanced Micro Devices
B. Divincenzo
Affiliation:
Applied Materials, 3050 Bowers Avenue, Santa Clara, California 95054
C.-L. Yang
Affiliation:
Applied Materials, 3050 Bowers Avenue, Santa Clara, California 95054
P. Arleo
Affiliation:
Applied Materials, 3050 Bowers Avenue, Santa Clara, California 95054
J. Marks
Affiliation:
Applied Materials, 3050 Bowers Avenue, Santa Clara, California 95054
P. Mikulan
Affiliation:
Electronic Materials and Processing Research Processing Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16082
T. Gu
Affiliation:
Electronic Materials and Processing Research Processing Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16082
S. Fonash
Affiliation:
Electronic Materials and Processing Research Processing Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16082
Get access

Abstract

An oxygen treatment in a high density plasma system is used to effectively remove the fluorocarbon polymer that deposits on the silicon substrate surface after an oxide etch process. Schottky current-voltage analysis, spectroscopic ellipsometry, and X-ray photoelectron spectroscopy, are used to investigate the effectiveness of the in-situ O2 clean process. Polymeric material deposited in the high density plasma system is shown to be completely removed with no polymeric residue remaining on the wafer surface after cleaning. Deep contacts, greater than 2 um, are shown to have the polymer effectively removed with the in-situ O2 clean process. Minimal oxide growth during the plasma clean is observed. Also, there is no etching of the silicon substrate with the O2 clean process. A comparison is made to an ozone clean process that is known to effectively clean organic contaminants from silicon surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Redondo, A. and Goddard, W. A. III, J. Vac. Sci. Technol. 21, 344(1982); (b) Y. J. Chabal and K. Raghavachari, Phys. Rev. Lett. 53, 282(1984); (c) P. Nachtigall, K. D. Jordan, and K. C. Janda, J. Chem. Phys. 95, 8652(1991); (d) C. J. Wu and E. A. Carter, Chem. Phys. Lett. 185, 172(1991); (e) J. A. Appelbaum, G. A. Baraff, D. R. Hamann, H. D. Hagstrum, and T. Sakurai, Surface Sci. 70, 654(1978); f) W. S. Verwoed, Surface Sci. 108, 153(1981); g) B.I. Craig and P. V. Smith, Surface Sci. 226, 155(1990).Google Scholar
2. (a) Sinniah, K., Sherman, M. G., Lewis, L. B., Weinberg, W. H., Yates, J. T. Jr., and Janda, K. C., J. Chem. Phys. 92, 5700(1990); (b) K. Sinniah, M. G. Sherman, L. B. Lewis, W. H. Weinberg, J. T. Yates, Jr., and K. C. Janda, Phys. Rev. Lett. 62, 567(1989); (c) M. L. Wise, B. G. Koehler, P. Gupta, P. A. Coon, and S. M. George, Surf. Sci. (in press ); (d) K. W. Kolasinski, S. F. Shane, and R. N. Zare, J. Chem. Phys. 95, 5482(1991); (e) J. J. Boland, Phys. Rev. Lett. 67, 1539(1991); (f) S. F. Shane, K. W. Kolasinski, and R. N. Zare, J. Chem. Phys. 97, 3704(1992)Google Scholar
3. (a) Andzelm, J. and Wimmer, E., J. Chem. Phys. 96, 1280(1992); (b) J. Andzelm, in Density Functional Methods in Chemistry, edited by J. Labanowski, and J. Andzelm (Springer, New York, 1991), pp. 155.Google Scholar
4. Salahub, D. R., Foumier, R., Mlynarski, P., Papay, I., St-Amant, A., and Ushio, J., in Density Functional Methods in Chemistry, edited by Labanowski, J. and Andzelm, J. (Springer-Verlag, New York, 1991), pp. 77.CrossRefGoogle Scholar
5. Hohenberg, P. and Kohn, W., Phys. Rev. B136, 864 (1964).Google Scholar
6. Kohn, W. and Sham, L. J., Phys. Rev. A140, 1133 (1965).Google Scholar
7. Sambe, H., and Felton, R.H., J. Chem. Phys. B62, 1122 (1975).Google Scholar
8. Dunlap, B.I., Connolly, J.W.D., and Sabin, J.R., J. Chem. Phys. 71, 3396 (1979).Google Scholar
9. (a) Becke, A. D., Phys. Rev. A38, 3098(1988); (b) A. D. Becke, J. Chem. Phys. 88, 2547(1988).Google Scholar
10. Vosko, S. H., Wilk, L., and Nusair, M., Can. J. Phys. 58, 1200(1980).Google Scholar
11. (a) Lee, C., Yang, W., and Parr, R. G., Phys. Rev. B37,785(1988); (b) J. P. Perdew, Phys. Rev. B33, 8822(1986).CrossRefGoogle Scholar
12. Colle, R. and Salvetti, D., Theor. Chim. Acta 37, 329(1975).Google Scholar
13. Godbout, N., Salahub, D. R., Andzelm, J., and Wimmer, E., Can. J. Chem. 70, 560(1992)..Google Scholar
14. The TZVPP basis set uses (13s9pld)/[5s4pld] contraction of Godbout's DZVPP basis set [16] for silicon atoms. The correlation consistent TZP basis set of Dunning was employed for hydrogen atoms. Dunning, T. H. Jr., J. Chem. Phys. 90, 1007 (1989).Google Scholar
15. Jing, Z. and Whitten, J. L., Surface Sci. 274, 106(1992).CrossRefGoogle Scholar