Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T09:46:51.419Z Has data issue: false hasContentIssue false

An Experimental Estimate of the Free Energy of Formation of Single Walled Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

L. M. Wagg
Affiliation:
National Renewable Energy Laboratory, Nanostructured Materials Research Group 1617. Cole Boulevard, Golden, Colorado 80401
G. L. Hornyak
Affiliation:
University of Denver, Department of Physics and Astronomy, 2199 S. University Boulevard, Denver, Colorado 80208
L. Grigorian
Affiliation:
Honda Research Institute USA, 1381 Kinnear Road, Suite 116, Columbus, OH 43212
A. C. Dillon
Affiliation:
National Renewable Energy Laboratory, Nanostructured Materials Research Group 1617. Cole Boulevard, Golden, Colorado 80401
K. M. Jones
Affiliation:
National Renewable Energy Laboratory, Nanostructured Materials Research Group 1617. Cole Boulevard, Golden, Colorado 80401
J. Blackburn
Affiliation:
National Renewable Energy Laboratory, Nanostructured Materials Research Group 1617. Cole Boulevard, Golden, Colorado 80401
P. A. Parilla
Affiliation:
National Renewable Energy Laboratory, Nanostructured Materials Research Group 1617. Cole Boulevard, Golden, Colorado 80401
M. J. Heben
Affiliation:
National Renewable Energy Laboratory, Nanostructured Materials Research Group 1617. Cole Boulevard, Golden, Colorado 80401
Get access

Abstract

Single walled carbon nanotubes (SWNT) were synthesized by methane CVD on a supported mixed transition metal (Fe/Mo) catalyst. Gas feed composition and reaction temperature were varied to identify the threshold conditions for the growth of SWNT. These reaction conditions closely approximate pseudo-equilibrium conditions with some active reaction intermediate (likely chemisorbed carbon atoms) that proceeds to nucleate and grow SWNT. This value also serves as an estimated upper limit of the free energy of formation ΔG*(T)SWNT since the active intermediate proceeds to form SWNT through a process that is thought to be essentially irreversible. The difference relative to graphite is in good agreement with literature values predicted from simulations for SWNT nuclei containing approximately 80 atoms, while considerably larger than that predicted for bulk 5, 5 SWNT. Our estimate over the range 700 to 1000 °C of 16.1 to 13.9 kJ/mol is considerably greater than the free energy of formation for diamond (between 5.8 and 6.9 kJ/mol from 700 to 925 °C).

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., and Ichihashi, T., Nature, 363, 603, 1993.Google Scholar
2. Bethune, D.S., Kiang, C.-H., Vries, M.S.d., Gorman, G., Savoy, R., Vasquez, J., and Beyers, R., Nature, 363, 605, 1993.Google Scholar
3. Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., Chem. Phys. Lett., 243, (1–2), 49, 1995.Google Scholar
4. Dai, H., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., Chem. Phys. Lett., 260, 471, 1996.Google Scholar
5. Peigney, A., Laurent, C., Dobigeon, F., and Rousset, A., J. Mater. Res., 12, (3), 3, 1997.Google Scholar
6. Hafner, J.H., Bronikowski, M.J., Azamian, B.R., Nikolaev, P., Rinzler, A.G., Colbert, D.T., Smith, K.A., and Smalley, R.E., Chem. Phys. Lett., 296, 195, 1998.Google Scholar
7. Hornyak, G.L., Grigorian, L., Dillon, A.C., Parilla, P.A., Jones, K.M., and Heben, M.J., J. Phys. Chem. B, 106, (11), 2821, 2002.Google Scholar
8. Cassell, A.M., Raymakers, J.A., Kong, J., and Dai, H., J. Phys. Chem. B, 103, 6484, 1999.Google Scholar
9. Bartholomew, C.H., Cat. Rev. Sci. Eng., 24, 67, 1982.Google Scholar
10. Trimm, D.L., Cat. Rev. Sci. Eng., 16, 155, 1977.Google Scholar
11. Kehrer, V.J., and Leidheiser, H.J., J. Phys. Chem., 58, 550, 1954.Google Scholar
12. Robertson, S.D., Carbon, 8, 365, 1971.Google Scholar
13. Baird, T., Fryer, J.R., and Grant, B., Nature, 233, 329, 1971.Google Scholar
14. Dent, F.J., and Cobb, J.W., Trans. Inst. Gas Eng., 602, 1945.Google Scholar
15. Rostrup-Nielsen, J.R., J. Catal., 27, 343, 1972.Google Scholar
16. Tavares, M.T., Alstrup, I., Bernardo, C.A., and Rostrup-Nielsen, J.R., J. Catal., 147, 525, 1994.Google Scholar
17. Wagner, E.S., and Froment, G.F., Hyd. Proc., 71, (7), 69, 1992.Google Scholar
18. Chase, M.W.J., NIST-JANAF Thermochemical Tables, (J. Phys. Chem. Ref. Data, 1998).Google Scholar
19. Bianchi, E.C., and Lund, C.R.F., J. Catal., 117, 455, 1989.Google Scholar
20. Alstrup, I., J. Catal., 109, 241, 1988.Google Scholar
21. Snoeck, J.W., Froment, G.F., and Fowles, M., J. Catal., 169, 240, 1997.Google Scholar
22. Nolan, P.E., Lynch, D.C., and Cutler, A.H., J. Phys. Chem. B, 102, 4165, 1998.Google Scholar
23. DeBokx, P.K., Kock, A.J.H.M., Boellaard, E., Klop, W., and Geus, J.W., J. Catal., 96, 454, 1985.Google Scholar
24. Charlier, J.-C., Blase, X., De Vita, A., and Car, R., App. Phys. A, 68, 267, 1999.Google Scholar
25. Terrones, H., Terrones, M., Hernandez, E., Grobert, N., Charlier, J.-C., and Ajayan, P.M., Phys. Rev. Lett., 84, 1716, 2000.Google Scholar
26. Wei, J., and Iglesia, E., J. Phys. Chem. B, 108, 4094, 2004.Google Scholar
27. Zein, S.H.S., Mohamed, A.R., and Sai, P.S.T., J. Am. Chem. Soc., 43, (16), 4864, 2004.Google Scholar
28. Alstrup, I., and Tavares, M.T., J. Catal., 139, 513, 1993.Google Scholar
29. Kuvshinov, G.G., Mogilnykh, Y.I., and Kuvshinov, D.G., Catal. Today, 42, 357, 1998.Google Scholar
30. Muradov, N.. Proceedings of the 2000 US DOE hydrogen program review, Washington, DC, 2000.Google Scholar
31. Ding, F., Bolton, K., and Rosen, A., J. Phys. Chem. B, 108, 17369, 2004.Google Scholar
32. Fan, X., Buczko, R., Puretzky, A., Geohegan, D., Howe, J.Y., Pantelides, S.T., and Pennycook, S.J., Phys. Rev. Lett., 90, (14), 145501, 2004.Google Scholar