No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
The four-point bend (4PB) test has emerged as a method of choice in semiconductor industry for obtaining bimaterial interface adhesion data. When measuring the interface adhesion using 4PB test, it is essential to obtain a crack through the interface of interest. The deposited films, however, posses intrinsic and extrinsic stresses which affect the ratio between energy release rates for interface cracking and crack penetration. Crack penetration and deflection at a bimaterial interface and the role of residual stress has been broadly studied before. However, the results are based on asymptotic analysis regarding interface between two semi-infinite half spaces, where the results do not directly account for boundary conditions and finite size effects of an actual test specimen. In this paper, we look at the role these residual stresses play on the competition between deflection and penetration energy release rates of a bimaterial interface and the extent of which the previous assumption of two semi-infinite media can be accepted.