Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T20:41:44.820Z Has data issue: false hasContentIssue false

Anisotropic Plasma ChemicalVapor Deposition of Copper Films in Trenches

Published online by Cambridge University Press:  01 February 2011

Kosuke Takenaka
Affiliation:
Department of Electronics, Kyushu University, Hakozaki, Fukoka 812-8581, Japan
Masao Onishi
Affiliation:
Department of Electronics, Kyushu University, Hakozaki, Fukoka 812-8581, Japan
Manabu Takenshita
Affiliation:
Department of Electronics, Kyushu University, Hakozaki, Fukoka 812-8581, Japan
Toshio Kinoshita
Affiliation:
Department of Electronics, Kyushu University, Hakozaki, Fukoka 812-8581, Japan
Kazunori Koga
Affiliation:
Department of Electronics, Kyushu University, Hakozaki, Fukoka 812-8581, Japan
Masaharu Shiratani
Affiliation:
Department of Electronics, Kyushu University, Hakozaki, Fukoka 812-8581, Japan
Yukio Watanabe
Affiliation:
Department of Electronics, Kyushu University, Hakozaki, Fukoka 812-8581, Japan
Get access

Abstract

An ion-assisted chemical vapor deposition method by which Cu is deposited preferentially from the bottom of trenches (anisotropic CVD) has been proposed in order to fill small via holes and trenches. By using Ar + H2 + C2H5OH[Cu(hfac)2] discharges with a ratio H2 / (H2 + Ar) = 83%, Cu is filled preferentially from the bottom of trenches without deposition on the sidewall and top surfaces. The deposition rate on the bottom surface of trenches is experimentally found to increase with decreasing its width.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cho, N. I., and Sul, Y., Mater. Sci. and Eng., B72, 184 (2000).Google Scholar
2. Weiss, K., Riedel, S., Schulz, S. E., Helneder, M., Wendt, H., and Gessner, T., Microelectron. Eng., 50, 433 (2000).Google Scholar
3. Chae, Y. K. and Komiyama, H., J. Appl. Phys., 90, 3610 (2001).Google Scholar
4. Norman, J.A.T., J. Phys. IV, 11, Pr3-497 (2001).Google Scholar
5. Ma, P. F., Schroeder, T.W., and Engstrom, J. R., Appl. Phys. Lett., 80, 2604 (2002).Google Scholar
6. Kwak, S. K., Chung, K. S., Park, I., and Lim, H., Current Appl. Phys., 2, 205 (2002).Google Scholar
7. Jin, H. J., Shiratani, M., Nakatake, Y., Fukuzawa, T., Kinoshita, T., Watanabe, Y., and Toyofuku, M., Jpn. J. Appl. Phys., 38, 4492 (1999).Google Scholar
8. Jin, H. J., Shiratani, M., Kawasaki, T., Fukuzawa, T., Kinoshita, T., Watanabe, Y., Kawasaki, H., andToyofuku, M., J. Vac. Sci. Technol. A, 17, 726 (1999).Google Scholar
9. Shiratani, M., Jin, H. J., Takenaka, K., Koga, K., Kinoshita, T., and Watanabe, Y., Sci. and Technol. of Adv. Mater., 2, 505 (2002).Google Scholar
10. Shiratani, M., Jin, H. J., Takenaka, K., Koga, K., Kinoshita, T. and Watanabe, Y., Mat. Res. Soc. Symp. Proc., Vol. 714E, p271 (2001)Google Scholar
11. Takenaka, K., Jin, H. J., Koga, K., Onishi, M., Shiratani, M., and Watanabe, Y., Proc. of Int. Symp. on Dry Process, (The Institute of Electrical Engineering of Japan, Tokyo, 2002), p.169.Google Scholar
12. Takenaka, K., Onishi, M., Kinoshita, T., Koga, K., Shiratani, M., Watanabe, Y., and Shingen, T., Proc. of Int.Workshop on Informations&Electrical Engineering, Suwon, Korea, 2002, p.227.Google Scholar
13. Takenaka, K., Onishi, M., Takeshita, M., Kinoshita, T., Koga, K., Shiratani, M., and Watanabe, Y., Proc. 2nd Int. Symp.Dry Process, (The Institute of Electrical Engineering of Japan, Tokyo, 2002), p.221.Google Scholar
14. Takenaka, K., Shiratani, M., Onishi, M., Takeshita, M., Kinoshita, T., Koga, K., and Watanabe, Y., Mater. Sci. in Semiconductor Processing, 5, 301 (2003).Google Scholar