Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T19:12:47.600Z Has data issue: false hasContentIssue false

Anodic and cathodic pre-treatment effects on BDD surface to deposit copper nanoparticles applied to nitrate reduction

Published online by Cambridge University Press:  16 January 2012

L. C. D. Santos
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), 12201-970, São José dos Campos - SP – Brazil.
A. B. Couto
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), 12201-970, São José dos Campos - SP – Brazil.
J. T. Matsushima
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), 12201-970, São José dos Campos - SP – Brazil.
M.C. Forti
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), 12201-970, São José dos Campos - SP – Brazil.
M. R. Baldan
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), 12201-970, São José dos Campos - SP – Brazil.
N. G. Ferreira
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), 12201-970, São José dos Campos - SP – Brazil.
Get access

Abstract

The influence of anodic and cathodic pre-treatment on boron doped diamond (BDD) surface for copper (Cu) electrodeposition was studied to assess Cu particle consolidation on BDD electrode. These modified electrodes were applied to study the nitrate electrochemical reduction process. The obtained results showed that the BDD surface cathodically treated presented high Cu particle density as well as even distribution on the electrode surface after the electrodeposition process. For samples anodically treated the electrodeposited Cu was dispersed with lower particle density. This behavior was attributed to a high electrode conductivity imposed by the cathodic pre-treatment leading to an increase in the BDD surface hydrogenation. Therefore, one can conclude that for electrochemical nitrate reduction the anodically treated BDD has a better reproducibility. This response is attributed to the Cu particle consolidation on BDD electrode due to the oxygen surface terminations induced by the anodic pretreatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., Cosby, B. J., BioScience 53, 341 (2003).Google Scholar
[2] Álvarez-Romero, G. A., Palomar-Pardave, M. E., Ramírez-Silva, M. T., Ana. Bioanal. Chem. 387, 1533 (2007).Google Scholar
[3] Paidar, M., Rousar, I., Bouzek, K., J. Appl. Electrochem. 29, 611 (1999).Google Scholar
[4] Rutten, O., van Sandwijk, A., Van Weert, G., J. Appl. Electrochem. 29, 87 (1999).Google Scholar
[5] Ureta, S., Yanez, C., Electrochim Acta 42, 1725 (1997).Google Scholar
[6]. Welch, C. M., Hyde, M. E., Banks, C. E., Compton, R. G., Anal. Sci. 21, 1421 (2005).Google Scholar
[7] Duo, I., Lévy-Clement, C., Fujishima, A., Comminellis, C., J. Appl. Electrochem. 34, 935 (2004).Google Scholar
[8] Genders, J., Hartsough, D., Hobbers, D., J. Appl. Electrochem. 26, 1 (1996).Google Scholar
[9] Mendes de Barros, R. C., Corat, E. J., Ferreira, N. G., Souza, T. M., Trava-Airoldi, V. J., Leite, N. F., Iha, K., Diamond Related Materials 5, 1323 (1996).Google Scholar
[10] Grujicic, D., Pesic, B., Electrochimica Acta 47, 2901 (2002).Google Scholar
[11] Córdoba, J. M., Odén, M., Surface and Coatings Technology 203, 3459 (2009).Google Scholar
[12] Girard, H., Simon, N., Ballutaud, D., Herlem, M., Etcheberry, A., Diamond Related Materials 16, 316 (2007).Google Scholar