No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
The atomic structure of grain boundaries in pulsed laser deposited YBCO/MgO thin films have been studied using transmission electron microscopy. The films have perfect texturing with YBCO(001)//MgO(001), giving rise to low-angle [001] tilt boundaries from the grains with the c-axis normal to substrate surface. Low angle grain boundaries have been found to be aligned preferentially along (100) and (110) interface planes. The energy of (110) boundary planes described by an alternating array of [100] and [010] dislocation is found to be comparable to the energy of a (100) boundary. The existence of these split dislocations is shown to further reduce the theoretical current densities of these boundaries indicating that (110) boundaries carry less current as compared to (100) boundaries of the same misorientation angle. Further, Z-contrast transmission electron microscopy of a 42° asymmetric high-angle grain boundary of YBCO shows evidence for the existence of boundary fragments and a reduced atomic density along the boundary plane